# Introduction to Artificial Intelligence

Lecture 17 – Learning

CS/CNS/EE 154

Andreas Krause

#### Announcement

- CS/CNS/EE 155 not offered next term
- Learning project sequence can be continued with
  - CS 141bc or
  - CS 144 and CS 145 or
  - CS 187 and CS 156a

#### Announcement 2

- Homework 3 due Wed Nov 24
- Project final implementation due Wed Dec 1
- Exam:
  - Take home, one day (date TBA)
  - Will have information session about exam next week

#### Markov Decision Processes

- An MDP has
  - A set of states  $X = \{x_1, ..., x_n\}$  ...
  - A set of actions  $A = \{a_1, ..., a_m\}$
  - A reward function r(x,a) [or random var. with mean r(x,a)]
  - Transition probabilities
     P(x'|x,a) = Prob(Next state = x' | Action a in state x)
- For now assume r and P are known!

Want to choose actions to maximize reward

## Becoming rich and famous



#### Planning in MDPs

Deterministic policy

- $\pi: X \rightarrow A$
- Induces a Markov chain: with transition probabilities

$$X_1, X_2, ..., X_t, ...$$



$$P(X_{t+1}=x' \mid X_t=x) = P(x' \mid x, \pi(x))$$

• Expected value  $J(\pi) = E[ r(X_1, \pi(X_1)) + \gamma r(X_2, \pi(X_2)) + \gamma^2 r(X_3, \pi(X_3)) + ...$ 

## Computing the value of a policy

ullet For fixed policy  $\pi$  and each state x, define value function

$$V^{\pi}(x) = J(\pi \mid \text{start in state } x) = r(x, \pi(x)) + E[\sum_{t} \gamma^{t} r(X_{t}, \pi(X_{t}))]$$

Recursion: 
$$\sqrt{T}(x) = r \left(x_{1}\pi(x)\right) + \gamma \left[\frac{1}{2}\sum_{k}x^{k-1} r \left(x_{k}\pi(x_{k})\right)\right]$$

$$= r \left(x_{1}\pi(x)\right) + \gamma \left[\frac{1}{2}\sum_{k}x^{k-1} r \left(x_{k}\pi(x_{k})\right)\right]$$
and  $J(\pi) = \begin{cases} r \left(x_{1}\pi(x)\right) + \gamma \left[\frac{1}{2}\sum_{k}x^{k-1} r \left(x_{k}\pi(x_{k})\right)\right] \\ \sqrt{T}(x_{1}) - \sqrt{T}(x_{1}) - \sqrt{T}(x_{1}) \\ \sqrt{T}(x_{1}) - \sqrt{T}$ 

## Value functions and policies

Every value function induces a policy



Every policy induces a value function

**Thm**: Policy optimal ⇔ greedy w.r.t. its induced value function

## Policy iteration

- Start with a random policy  $\pi$
- Until converged do:

Compute value function  $V_{\pi}(x)$ 

Compute greedy policy  $\pi_G$  w.r.t.  $V_{\pi}$ 

Set  $\pi \leftarrow \pi_{G}$ 

- Guaranteed to
  - Monotonically improve

- Converge to an optimal policy  $\pi^*$
- Often performs really well!
- Not known whether it's polynomial in |X| and |A|!

#### Value iteration

- Initialize  $V_0(x) = \max_a r(x,a)$
- For t = 1 to 1

For each x, a, let 
$$Q_t(x,a) = v(x,a) + \gamma \sum_{y'} P(x'|x,a) \bigvee_{t-1} (x')$$

For each x let 
$$V_t(\kappa) = \max_{a} Q_t(\kappa, a)$$

Break if 
$$\max_{x} |V_{t}(x) - V_{t-1}(x)| \leq \varepsilon$$

- Then choose greedy policy w.r.t. V<sub>t</sub>
- Guaranteed to converge to ε-optimal policy!

## Applications of MDPs

- Robot path planning (noisy actions)
- Elevator scheduling
- Manufactoring processes
- Network switching and routing
- Al in computer games

**...** 

#### MDP = controlled Markov chain



Specify  $P(X_{t+1} \mid X_t, A)$ 

- State fully observed at every time step
- Action A<sub>t</sub> controls transition to X<sub>t+1</sub>

#### POMDP = controlled HMM



- Only obtain noisy observations Y<sub>t</sub> of the hidden state X<sub>t</sub>
- Very powerful model! ©
- Typically extremely intractable (8)

#### POMDP = belief state MDP





#### Solving POMDPs

- For finite horizon T, set of reachable belief states is finite (but exponential in T)
- Can calculate optimal action using dynamic programming



### Approximate solutions to POMDPs

- Key idea: most belief states never reached
  - → Discretize the belief space by sampling
  - → Point based methods:
    - Point based value iteration (PBVI)
    - Point based policy iteration (PBPI)
- Alternative approach: Assume parametric functional form of policy
  - Policy gradient optimization

## Learning

#### Learning

- So far, assumed that models were given to us
  - Bayesian network structure and CPDs
  - Transition/observation models for HMMs and KFs
  - Rewards and transition models for MDPs
- Next topic: Learn models from training data
  - This lecture: Learn parameters from i.i.d. data
  - Next lecture: Learning through exploration (reinforcement learning)

## (Supervised) Learning

ullet Want to learn  $f:\mathcal{X} o\mathcal{Y}$ 

X: Set up inputs (discrete, continuous)

Y: Set of outputs

from i.i.d. training examples

$$(x_1, y_1), ..., (x_N, y_N) \sim P(X, Y)$$

Goal: minimize generalization error

$$\mathbb{E}_{X,Y}[\ell(Y,f(X))]$$

with loss function  $\ell$ , for example:

$$\ell(y, f(x)) = (y - f(x))^2$$

#### Linear regression



$$f(x) = a \cdot x + b$$

$$f(\tilde{x}) = w^{T} \tilde{x}$$

$$\tilde{x} = [1, x]$$

$$w_{i} = b_{i} w_{2} = a$$

$$((y'_{i} f(x'_{i} w)) = (y'_{i} - f(y'_{i} w))^{2}$$

$$= (y'_{i} - w^{T} \times 1)^{2}$$

#### Minimizing training error

Would like to minimize generalization error

$$w^* = \arg\min_{w} \mathbb{E}_{X,Y}[(Y - w^T X)^2] = \int \rho(x,y) (y - w^T x)^2 dxdy$$

- Don't have access to P(X,Y)! Cannot evaluate generalization error
- Idea: Instead, minimize training error

dea: Instead, minimize training error 
$$\hat{w} = \arg\min_{w} \frac{1}{N} \sum_{i=1}^{N} (y_i - w^T x_i)^2$$
 Closed for solution!  $\hat{w} = (x^T x)^T x^T y$ 

#### Least squares = MLE

Least squares optimization

$$\hat{w} = \arg\min_{w} \frac{1}{N} \sum_{i=1}^{N} (y_i - w^T x_i)^2$$

• Equivalent probabilistic interpretation:

$$P(D|w) = \prod_{i=1}^{N} P(y_i|x_i|w)$$

$$lm P(D|w) = \sum_{i=1}^{N} lm \int_{2\pi d^2} exp(-\frac{(y_i-w^Tx_i)^2}{\sigma^{12}})$$

$$= const - \frac{1}{\sigma^2} \sum_{i=1}^{N} (y_i-w^Tx_i)^2$$

## Learning non-linear functions



## Overfitting

• Min. training error ≠ min. generalization error!



#### Regularization

 Can avoid overfitting by penalizing "complex" functions (large weights)

- Occam's razor
   "The simplest explanation is more likely the correct one"
  - → Prior assumption about model complexity



entia non sunt multiplicanda praeter necessitatem

## Regularization ≈ Posterior inference

- A priori, assume weights should be small
  - need fewer bits to describe, simpler model

E.g.: 
$$P(w) = \mathcal{N}(0; \lambda^2 \cdot I)$$

argumax  $P(w|D) = argumax$   $P(w) \cdot P(D|w)$ 

$$= argumi \frac{1}{2} \sum_{i=1}^{N} (g_i - v^T x_i)^2 + \sum_{i=1}^{N} \sum_{j=1}^{N} v_j^2 \quad Choose \ 1!$$

Loy diselihood log prior

Fit to data Complexity of model

#### Intuition: Bias variance tradeoff

- Too simple model:
  - Doesn't fit the data well
  - Biased solution
  - "Underfitting"
- Too complex model:
  - Highly sensitive to slight perturbations of the data
  - High variance solution
  - "Overfitting"
- Want to choose regularization to balance out bias and variance

## Choosing the right regularizer

• How should we choose the regularization parameter?



#### Estimating regularization error

- Idea: Split data set into training and test set
- Optimize test set error instead of training set error!
- Is this a good idea?

#### **Cross-validation**

- May overfit if we optimize for fixed training set!
- Remedy: Cross-validation



- Split data set into k "folds"
- For each possible regularization parameter setting  $\lambda$ :
  - For i = 1:k
    - Train on all but i-th fold; calculate error E<sub>i</sub>
  - Estimate generalization error for param.  $\lambda$  as  $\frac{1}{k} \sum_{i} E_{i}$
- Can show that cross-validation error "nearly" unbiased!

#### Classification

- In classification, want to predict discrete label
- For example: binary linear classification  $f \times \chi \longrightarrow \{ + (-1) \}$



#### 0-1 loss

• Predict according to  $f(x; w) = sign(w^T x)$ 

$$G-1$$
 loss:  $l(y, f(x; w)) = \begin{cases} 0 & \text{if } y \neq sign(v^{T}x) \\ 0 & \text{otherwise} \end{cases}$ 
 $w^{2} \in \text{argmin} \quad \sum_{i} l(y; i f(x; w))$ 

Non-differentiable, non-convex!

#### Logistic regression

Key idea: Predict the probability of a label



#### Logistic regression

Maximize (conditional) likelihood

$$\ln P(D_Y \mid D_X, w) = \sum_{i=1}^N \ln P(y_i \mid x_i, w) = -\sum_{i=1}^N \log \left(1 + \exp(-y_i w^T x_i)\right)$$

- Convex, differentiable!
- Can find optimal weights w efficiently!
- Can regularize by putting prior on weights w (exactly as in linear regression)