Introduction to
Artificial Intelligence

Lecture 17 — Learning

CS/CNS/EE 154
Andreas Krause

Announcement

o CS/CNS/EE 155 not offered next term

¢ Learning project sequence can be continued with
e CS 141bcor
e CS 144 and CS 145 or
e CS 187 and CS 156a

Announcement 2

¢ Homework 3 due Wed Nov 24
¢ Project final implementation due Wed Dec 1

¢ Exam:
o Take home, one day (date TBA)
¢ Will have information session about exam next week

Markov Decision Processes

¢ An MDP has
o A set of states X = {x,...,.X,.} ...
¢ A set of actions A={a,,...,.a.,}
e A reward function r(x,a) [or random var. with mean r(x,a)]

e Transition probabilities
P(x'|x,a) = Prob(Next state = x’ | Action a in state x)

e For now assume r and P are known!

¢ Want to choose actions to maximize reward

Becoming rich and famous

1(0) 72 (-1)

1(-1)

poor,
unknown

poor,
famous

Y2 (-1)
7> (0)

A

(0)
72 (-1)

72 (-1) %2 (10) 1(-1)

% (10) mm

Planning in MDPs

¢ Deterministic policy X2 A @‘D’ @
¢ Induces a Markov chain:) O, ST, A ’ ‘
(RU

with transition probabilities

P(X,.;=x" | X;=x) =P(x" | x, t(x))

o Expected value J(m) =E[r(X,,m(X,))
+ v r(X,,m(X,))
+v2 r(X5,7(X5))
...]

Computing the value of a policy

¢ For fixed policy m and each state x, define value function

V*(x) = J(;t | start in state x) = r(x,:n:(x)) +E[D, vt r(X,,m(X,))]

Recursion: \/T[;c) = (ki) £ Y EZ%’»J" r()(etTT(/\/{,)ﬂ
- r(x,rr(z)) + X‘{"P[x‘[x(rr[x)) \/TT[K‘)

T
VTT(XO) [\/T'(t) ,.,VTT[uU fr(\,ﬁ(t))l .,ar‘[mTF(m)) 7

In matrix notation: \/" - e wTY" .
— m Y\ E‘{K_/ ?([[V’z ZT["J) ~~‘P[‘11"“1_]/‘ﬂ))
\——7 \/. = I,"X\f) r)

=>» Can compute V@ analytlcall(y, by matrix inversion! ©

and J(m) =

7

Value functions and policies

Every value function induces a policy

~ ™

Value function V* Greedy policy w.r.t. V
V*(x) = r(x,mt(x)) + m,(x) = argmax, r(x,a)+
Yo, P(X'[x,7t(x)) V¥(x) v S P(X" | x,a) V(X)

N e

Every policy induces a value function

Thm: Policy optimal < greedy w.r.t. its induced value function

Policy iteration

¢ Start with a random policy nt

¢ Until converged do:
Compute value function V_(x)
Compute greedy policy t; w.r.t. V_
Set w €& mg

» Guaranteed to T T
¢ Monotonically improve Vt‘,x : \/ w[") z |/ t(%)
¢ Converge to an optimal policy "

¢ Often performs really well!

o Not known whether it’ s polynomial in |X]| and |A]!

Value iteration

o Initialize V,(x) = max, r(x,a)
o Fort=1to 1

For each x, a, let Qﬁ(&a\ = (X, ”\3) gPl/“l)‘ﬁ) \4_, (X'>
Foreachxlet — V, (€)= we @, (k)
Break if Mg« | Ve~ Vi & | <«

¢ Then choose greedy policy w.r.t. V,

¢ Guaranteed to converge to e-optimal policy! 10

Applications of MDPs

¢ Robot path planning (noisy actions)
¢ Elevator scheduling

¢ Manufactoring processes

¢ Network switching and routing

¢ Al in computer games

‘ LN

11

MDP = controlled Markov chain

)~

Specify P(X,,; | X, A)

o State fully observed at every time step
¢ Action A, controls transition to X,,,

12

POMDP = controlled HMM

OO0

Specify P(X.,1 | X, A)
P(Y, | X,)

» Only obtain noisy observations Y, of the hidden state X,
¢ Very powerful model! ©
¢ Typically extremely intractable ® .

POMDP = belief state IVIDP

14

Solving POMDPs

o For finite horizon T, set of reachable belief states is finite
(but exponential in T)

¢ Can calculate optimal action using dynamic programming

A,in P(X, 1 Ey) A
E. Q- O ()
Ay in PX T Eq 1) .. £\
E. ., () e
Ao P(X, 0 TE) YA
E3 @, D - O @,

U(Xt+3) A A e A A

15

Approximate solutions to POMDPs

¢ Key idea: most belief states never reached

=>» Discretize the belief space by sampling
=» Point based methods:

¢ Point based value iteration (PBVI)
¢ Point based policy iteration (PBPI)

¢ Alternative approach: Assume parametric functional
form of policy
¢ Policy gradient optimization

16

Learning

¢ So far, assumed that models were given to us
¢ Bayesian network structure and CPDs
¢ Transition/observation models for HMMs and KFs
e Rewards and transition models for MDPs

o Next topic: Learn models from training data
¢ This lecture: Learn parameters from i.i.d. data

¢ Next lecture: Learning through exploration (reinforcement
learning)

18

(Supervised) Learning

o Wanttolearn f: X —)Y
X: Set up inputs (discrete, continuous)

Y: Set of outputs

from i.i.d. training examples
(x1,Y1), - (N, yN) ~ P(X,Y)

¢ Goal: minimize generalization error
Ex, v (Y, f(X))

with loss function ¢, for example:

Uy, f(z)) = (y — f(2))*

19

Linear regression

{(y)A ,4/()(5 = a-«+b

\A/!Cb[Wy,bc‘

(o' Bles))= (5 b

= (4! Tl

20

Minimizing training error

¢ Would like to minimize generalization error
w* = argmin Ex v [(Y — w! X)?] >) Pley) (9 -vTx)" drly

¢ Don’t have access to P(X,Y)! Cannot evaluate
generalization error

¢ ldea: Instead, minimize training error
N

A - ° 1 T 2
W = argmin N ;Zl(yz w' x;) } ’
= __/cr_\ lg
O (e o | N - X - I
Closed fon mlbin! 1)y 7 [— [#]°

.
A)
]

——

21

Least squares = MLE

¢ Least squares optimization

: g : Peti)
» Equivalent probabilistic interpretation: ,)

gps, o $S e >/’\’ J\/(\,\/TX , 6"?)
Tlen. .
P(blw) = T P9i] %) p

(:L o T.eyz
o[- BT

= Cmﬁ-—é}ig (‘}z*WTXz 32

Learning non-linear functions

AS)W

k&
L(ey= ol v ¥
(=0

5\(’:[[(k,k?()‘}ln- XkJ
#(?) = \A/T}?

[iveor vequess oo |

23

Overfitting

¢ Min. training error # min. generalization error!

error

Model complexity

24

Regularization

¢ Can avoid overfitting by penalizing “complex”

functions (large weights)

e Occam’s razor
“The simplest explanation is more
likely the correct one”

=>» Prior assumption about
model complexity

entia non sunt

multiplicanda
praeter

necessitatem .

Regularization = Posterior inference

e A priori, assume weights should be small
=2 need fewer bits to describe, simpler model

By Pl) = Mo A=)

vy K P(w(D) = = Ot Pl - POOIV)

- Gt I Pl < Lo POOI)
p <y Hew shodd
= oand 2! (9:~ v FANE: 2, vt Chooye 2
v L3t \/)/

Lo*z (I;:ZLLAWJ (02 [ahd\-'
T o oledo Lomp (u hy o emodef

26

Intuition: Bias variance tradeoff

¢ Too simple model:
e Doesn’t fit the data well

e Biased solution
¢ “Underfitting”

¢ Too complex model:
¢ Highly sensitive to slight perturbations of the data
¢ High variance solution
¢ “Overfitting”

¢ Want to choose regularization to balance out bias and

variance
27

Choosing the right regularizer

¢ How should we choose the regularization parameter?

Generalization error

_ Ot

A

Ueshd'f
)

>
Strength of regularizer A

28

Estimating regularization error

¢ Idea: Split data set into training and test set

¢ Optimize test set error instead of training set error!
¢ Is this a good idea?

29

Cross-validation

¢ May overfit if we optimize for fixed training set!
¢ Remedy: Cross-validation

D, D, D,

¢ Split data set into k “folds”

o For each possible regularization parameter setting A:
e Fori=1:k
» Train on all but i-th fold; calculate error E,

1
¢ Estimate generalization error for param. A as E E E;
)

¢ Can show that cross-validation error “nearly” unbiased!
30

Classification

¢ In classification, want to predict discrete label
o For example: binary linear classification X £, .

Ham

>

f(x;w) = sign(wy + w; X, + w, X,)
,((’Aeor' clos fro-

31

» Predict according to f(z;w) = sign(w” z) |
CS U 9k Sy [T
O - (o+ [(‘2(@(‘(/”ﬂ - 60 oo

Waa ewo\f/wfv\ cZ‘ ((‘al‘itﬁ(xi‘w))

/\lovx,—cliwt‘a,ue, non -Con vk ;(\.l

Logistic regression
¢ Key idea: Predict the probability of a Igbel

b oa >
(((‘W& y _A
i —

)\\jv'- W

b. T = K R
W« °
7 / P[Y:l l yl"‘/)
YT |

—

[+ 2tp L)

L. Ploy Kt} = = [m

>
WAT X
{(+ M(E‘g.\f&))

(0 (% 3

Logistic regression

¢ Maximize (conditional) likelihood

N N
In P(Dy | Dx,w) = > WPy | z,w) == log(l + eXp(—yin:qu))
1=1 1=1

o Convex, differentiable!
¢ Can find optimal weights w efficiently!

¢ Can regularize by putting prior on weights w
(exactly as in linear regression)

34

