Introduction to
Artificial Intelligence

Lecture 16 — Markov Decision Processes

CS/CNS/EE 154
Andreas Krause

Announcements

o Homework 3 out, due Wed Nov 24
¢ Code for project final released; due Dec 1

HMMs / Kalman Filters

o Xy,....X7: Unobserved (hidden) variables

®Y,,..,Y;: Observations

o HMMs: X. Multinomial, Y, multinomial (or arbitrary)
o Kalman Filters: X, Y, Gaussian distributions

Bayesian filtering

» Start with P(X,) (x,)2 (%,)2 (%,)2 (x,)2 (x;)2 (%)

o Attime t

¢ Assume we have P(Xt | y1,__t-1) G @ @ @ @ e

o Conditioning: P(X, | y;) Have P(K]
l

U i) = TG Todsy)
TWX nde

o Prediction: P(X,,; | y; +)

P(K{;w(b(e Q P(tu‘tlgla

O P(%(9 e M

PO ¢ (%)
Fr kb ks, com do € ‘k’é} n 0

Kalman Filters (Gaussian HMMs)

® X;,...,.X;: Location ofobject bemgtracked eR’
»Y,,..,Y;: Observations ék

o P(X,): Prior belief about location at time 1
o P(X,,11X): “Motion model”

e How do | expect my target to move in the environment?

Xir1 = FX; + ¢ where €4 € N(O,)

o P(Y, | X,): “Sensor model”
o What do | observe if target is at location X,?

Yt HXt -+)¢ where 7775 = N(O >)

General Kalman update

¢ Transition model P(xip1 | x¢) = N(xeq1; Fx4, 25)
» Sensor model P(y: | x¢) = N(yy; Hxy, 2y)

o Kalman Update: t+1 = Frz + K1 (ye+1 — HF)
Siv1 = (I —Ki) (FSFL +35,)

¢ Kalman gain:

K1 = (FX,F' + 3,)H (H(FXF' +3,)H +3%,)7"

¢ Can compute >; and K; offline

When KFs fail

¢ KFs assume transition model is linear
¢ Implies that predictive distribution is Gaussian (unimodal)

¢ Need approximate inference to capture nonlinearities!

Dynamic Bayesian Networks

o At every timestep have a Bayesian Network

» Variables at each time step t called a slice S,

|”

o “Temporal” edges connecting S,,, with S,

Inference in DBNs?

Marginals at time 2

by

infRence)
¢
©)

Particle filtering

¢ Very useful approximate inference technique for
dynamical models
¢ Nonlinear Kalman filters
e Dynamic Bayesian networks

» Basic idea: Approximate the posterior at each time by
samples (particles), which are propagated and
reweighted over time

10

Particle filtering example

Rain, Rain, Rain,_ Rain,,
000 000 co0o ®
lrue 0000 X o000 oo o
@ o] Q0 000
Jalse | o o0 00 0000
(a) Propagate (b) Weight (c) Resample

" Vo aumbrel,

11

Representing distributions by particles

» True distribution (possibly continuous): P(x)

¢ N i.i.d. samples: T T
1yeeey LN :
- §.t =y L
L

» Represent: P(z) ~
o Get expectations: Ep[f(X)] ~ i Zf(%)

» E.g., mean: Ep|X] ~ — Zw"

[|

12

Particle filtering

1
) SUpPOSe P(Xt ‘ yl:t) ~ N Zéxi,t
i—1
» For each particle: z; ~ P(Xit1 | it)

%
1 Q?g IP[%%:[&'I)
¢ Weigh particles: w; = Ep(ytH | x;)
N

1
» Resample N particles Lit+1 ™~ N sz’%;
i=1

13

Robot localization & mapping

D. Haehnel,
W. Burgard,
D. Fox, and
S. Thrun.

IROS-03.

¢ Infer both location and map from noisy sensor data

o Particle filters y

Activity recognition

L. Liao, D. Fox, and H. Kautz. AAAI-04

Predict “goals” from raw GPS data
“Hierarchical Dynamical
Bayesian networks”

Significant places
home, work, bus stop, parking lot, friend

Activity sequence
walk, drive, visit, sleep, pickup, get on bus

GPS trace

association to street map

¢ Dynamical models

e Multiple copies of static models, one per time step
¢ Examples:

o HMM

¢ Kalman Filter

¢ Dynamic Bayesian networks
¢ Inference tasks

e Filtering/prediction: Can do recursively!

¢ Smoothing
o MPE

¢ Particle filtering for approximate inference

Probabilistic planning

¢ So far: Probabilistic inference in dynamical models

e E.g.: Tracking a robot based on noisy measurements

¢ Next: How should we control the robot to maximize
reward?

17

Probabilistic planning

3 + 1 0.8
1 START
1 2 3 4

(a) (b)

18

Becoming rich and famous

1(0) Y2 (-1)

1(-1)

poor,
unknown

poor,
famous

% (-1)
2 (0)

A

(0)
72 (-1)

72 (-1) %2 (10) 1(-1)

% (10) %B

19

Markov Decision Processes

¢ An MDP has

o A set of states X = {xy,...,.X.} ...
¢ A set of actions A={a,,...,.a.,}
e A reward function r(x,a) [or random var. with mean r(x,a)]

¢ Transition probabilities
P(x'|x,a) = Prob(Next state = x’ | Action a in state x)

e For now assume r and P are known!

¢ Want to choose actions to maximize reward

20

Utility over time

¢ Finite horizon
S 26 33§

N " 3 t= "t
¢ Discounted rewards
(7N O\’Z_
S, —= S,L - e~
A R 5 :
r =y
T @’
ye (o)

21

Finite horizon MDP Decision model

¢ RewardR=0
o Start in state x

o Fort=0toT
¢ Choose action a

e Obtain reward R =R + r(x,a)
e End up in state x” according to P(x'|x,a)
e Repeat with x €< X’

22

Discounted MDP Decision model

¢ RewardR=0
o Start in state x

o Fort=0to

e Choose action a

¢ Obtain discounted reward R=R + r(x,a)
¢ End up in state x’ according to P(x'|x,a)

e Repeat with x €< x’

This lecture: Discounted rewards

¢ Fixed probability (1-y) of “obliteration”
(inflation, running out of battery, ...)
23

Policies

poor,
unknown

Policy: Pick one fixed action for each state 2

Policies: Always save?

POOr, poor,
unknown famous

25

Policies: Always advertise?

pOor, B pOoor, B
unknown famous

26

Policies: How about this one?

poor, poor,
unknown famous

27

Planning in MDPs

o Deterministic policy X2 A @"p’ (PF)

¢ Induces a Markov chain:) O, SN, ’ ‘
RU

with transition probabilities

P(X,,;=x" | X;=x) =P(x" | x, t(x))

o Expected value J(m) =E[r(X,,m(X,))
+ v r(X,,m(X,))
+v2 r(X5,7(X5))
...]

28

Computing the value of a policy

¢ For fixed policy m and each state x, define value function

V*(x) = J(;t | start in state x) = r(x,:n:(x)) +E[D, vt r(X,,m(X,))]

Recursion: |/ () ~ (kb)) + Y EZ%U«“ (X T (£)]
= (k) + X‘{"P[x‘[x(rr[x)) V7 ()

T
VTT(XO) [\/T'(t) ,.,VTT[uU fr(\,ﬁ(t))l .,ar‘[mTF(m)) 7

In matrix notation: \/" - e wTY" .
— m Y\ E‘{K_/ ?([[V’z ZT["J) ~~‘P[‘11"“1_]/‘ﬂ))
\——7 \/. = I,"X\f) r)

=>» Can compute V@ analytlcall(y, by matrix inversion! ©

and J(m) =

29

Policies

— — : + 1 0.812 0.868 | 0.918 +1
f . f =N 0.762 0.660 —1
f - —— —— 0.705 | 0.655 | 0.611 0.388
1 2 3 4 1 2 3 08 4
0.1 0.1

How can we find the optimal policy?

30

A simple algorithm

¢ For every policy t compute J(m)
o Pick " = argmax J(x)

Is this a good idea?? N/

s) B
- Po(fc{es < Al

31

Suppose | give you the values

Sg e d”‘)L&w‘{ ‘ X
g v " 54“{"’ 3 | 0812 | 0.868 | 0.918 +1

QUx#) = 7 (xa) + Ipfcina)- V(¢ .
X! 2 | 0.762 0.660 1

= 0¥ ¢ agvit. Qta)
A

1 0.705 0.655 0.611 0.388

1 2 3 4

0.8

0.1 0.1

Value functions and policies

Every value function induces a policy

~ ™

Value function V@ Greedy policy w.r.t. V
V*™(x) = r(x,mt(x)) + m,(x) = argmax, r(x,a)+
Y2 P(X' | x,7t(x)) VE(x’) vy > P(X" | x,a) V()

o -~

Every policy induces a value function

Thm: Policy optimal <~ greedy w.r.t. its induced value function!

33

Policy iteration

o Start with a random policy nt

¢ Until converged do:
Compute value function V_(x)
Compute greedy policy t; w.r.t. V_
Set w € mg

» Guaranteed to T T
¢ Monotonically improve Vit x oV w[") z Y t(%)
¢ Converge to an optimal policy &

¢ Often performs really well!

¢ Not known whether it’s polynomial in | X| and |A]!

34

Alternative approach

» For the optimal policy =" it holds (Bellman equation)

V¥(x) = max, r(x,a) +v >, P(x' | x,a) V*(x)

o Compute V* using dynamic programming:
Vi (x) = Max. expected reward when

starting in state x and world ends
In t time steps

Volx) = v i (k)
Vi) = e plead v oy 8P (k) Vo ()
Vi (x) = " A

35

Value iteration

o Initialize V,(x) = max, r(x,a)
o Fort=1to 1

For each x, a, let 6?6@#\ = k) gPl/“l)‘ﬂ) \4_, (X'>
Foreachxlet V(€)= sk @, (k)
Break if 1 | V@~ Ve, k[<

¢ Then choose greedy policy w.r.t. V,

¢ Guaranteed to converge to ¢-optimal policy! 36

Value iteration

4
,l
——
08 1,
* ’
I

& ' . ;
s 0.6 A ." T (3,1)

@ 04 4 4’1 f ?

; ". .',/,._-— 4.,1) 2 -1
% 0 2 -I:' .,‘:/

-] H .’:-

-0.2 -

0 5 10 15 20 25 30

Number of iterations

37

Recap: Ways for solving MDPs

¢ Policy iteration:

¢ Start with random policy nt
o Compute exact value function V* (matrix inversion)
¢ Select greedy policy w.r.t. V* and iterate

¢ Value iteration

¢ Solve Bellman equation using dynamic programming
V.(x) = max, r(x,a) +v X, P(x' | x,a) V,_4(x)

¢ Linear programming

38

Applications of MDPs

¢ Robot path planning (noisy actions)
¢ Elevator scheduling

o Manufactoring processes

¢ Network switching and routing

¢ Al in computer games

‘ LN

39

