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Announcements

¢ Homework 2 due today

¢ Homework 3 out later this week

¢ Final project due December 1

o Code released on Monday (Nov 15)

¢ Note on midterm grades (Avian Asker)



Sampling based inference

¢ So far: deterministic inference techniques

¢ Variable elimination
¢ (Loopy) belief propagation

¢ Will now introduce stochastic approximations

¢ Algorithms that “randomize” to compute expectations

¢ In contrast to the deterministic methods, guaranteed to
converge to right answer (if wait looong enough..)

¢ More exact, but slower than deterministic variants



Forward sampling from a BN

Int Diff | [80,100]
Low asy 03
Low | Hard 0.05
High | Easy 0.9
High | Hard 0.5

(o)

| Grade | Fail | Pass
80,100] | 0.1 0.9
[50,80) | 0.4 0.6
[0,50) | 0.88 | 0.01




Rejection sampling

¢ Collect samples over all variables

. Count
P(X4=%4|Xp=xp)~ 2 (x4, %)

Count(xp)

o Throw away samples that disagree with xg
» Can be problematic if P(Xg = xg) is rare event



Sample complexity for probability estimates

o Absolute error:

Prob(‘ﬁ(x) — P(x)| > 5) < 2exp(—2Ne?)

¢ Relative error:
Pmb<13(x) <(1+ 5)P(X)) < 2 exp(— N P(x)e2/3)
it Pl comedilly gnill  need Negonsdady loy,



Sampling from rare events

» Estimating conditional probabilities P(X, | Xg=x;)
using rejection sampling is hard!
o The more observations, the unlikelier P(Xg = xg) becomes

¢ Want to directly sample from posterior distribution!



Gibbs sampling

o Start with initial assighment x({® to all variables
o Fort=1toedo

o Set x(t) = x(t-1)

e For each variable X

« Set v, = values of all x®* except x.
« Sample x. from P(X. | v;)

¢ For large enough t, sampling distribution will
be “close” to true posterior distribution!

¢ Key challenge: Computing conditional
distributions P(X; | v;)



Gibbs Sampling

Gibbs sampling P(D,I,G,S,L | J = 1)

lter |D I G S L J
I I VR S O R
2 Feoe<Ao |o | |1 0RO
3 e L |0 |0 |1 (&) (s
4 O ( @, [ |1 (L)
P>z 0

\@./\/P(b‘l [(G=1§=06, L <01J= )

?CDzl <t 6= L [.o,(,-olj .

© oy 2 PG bl (| DLE=oftz() . Psott™ ) Y y=HETS:d

_?M

) peety PGt (O

I

v

(1)

DCCo1T=1) P Cesfe=l) Pla=tc=o1570)

P(D\P(G il‘sz ’



Example: (Simple) image segmentation
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Convergence of Gibbs Sampling
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Summary: Inference

¢ For tree-structured Bayes nets, can compute exact
marginals
¢ Variable elimination
¢ Belief propagation (efficiently computes all marginals)
¢ For loopy networks, can use approximate inference
¢ Loopy belief propagation (may not converge)
¢ Gibbs sampling (will converge, but may take long time)
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Information gathering

e So far:

¢ Bayesian networks for quantifying uncertainty in real world
environments

¢ Exact and approximate algorithms for inference in Bayesian
networks (e.g., compute P(Pit | Breezes) )

¢ Now:

¢ Selecting most “informative” variables for making effective
predictions / decisions
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Why does my car not start?
Alternator Fapgelt L'e,
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Clinical diagnosis?

¢ Patient either healthy orill
o Can choose to treat or not treat

healthy ill
Treatment -SS S
No treatment 0 -SSS

¢ Only know distribution P(ill | observations)

¢ Can perform costly medical tests to reveal aspects of
the condition

¢ Which tests should we perform to most cost-
effectively diagnose?
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Autonomous robotic exploration

¢ Limited time for measurements
¢ Limited capacity for rock samples

¢ Need optimized
information gathering!




A robot scientist

Liquid-handling
robot Controlling
Plate reader computer
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How do people gather information?
[Renninger et al, NIPS "04]




How do people gather information?
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How do people gather information?
[Renninger et al, NIPS '04]
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How do people gather information?
[Renninger et al, NIPS '04]

23



How do people gather information?
[Renninger et al, NIPS "04]
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Running example: Detecting fires

Want to place sensors to detect fires in buildings
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Monitoring using Bayesian Networks

X,: temperature
at location s

Y.: sensor value
at location s

Y, = X, + noise

Joint probability distribution
P(Xy)eees XY 150 Y ) = P(Xy, ..., X )P(Yl, N | Xy X))

J

~
Prior Likelihood
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Making observations

Less uncertain = Reward[ P(X|Y,=hot)] = 0.2
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Making observations

Reward[ P(X|Y,=hot)] = 0.4



A different outcome...

Reward[ P(X|Y,=cold)] = 0.1



Reducing uncertainty

¢ Want to select observations that maximize reduction in
uncertainty

¢ Can quantify uncertainty using Shannon entropy:
E P(X = x)log, P(X = )

o For discrete var{ables 0 <
5. P9 = 5 = H(X) Ele'o’lz n = A

A
E
e
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s

» Thus, can use Reward[ P(X) ] =-H(X) = >, P(x) log, P(x)

30



9
-
O
E=
(©
>
p -
Q
)
@)
O
oo
=
Y-
(O
=

Prior entropy: H(X) ~ 4.2



Posterior entropy

o Entropy before observations:

ZP = x)log, P(X = x)

¢ Entropy after observing Y =y:
H(X|Y =y) = ZP =z |Y =y)log, P(X =z |Y =y)
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Making observations

Posterior entropy H(X | Y3 = hot) ~ 2.7
Reward: H(X)—H(X|Y3=hot)=~1.5
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A different outcome...

Posterior entropy H(X | Y3 = cold) ~ 3.2
Reward: H(X)— H(X|Y;=rcold)~1.0

34



Information gain

¢ Entropy after observing Y =:
H(X|Y =y) = ZP =z |Y =y)logy P(X =z | Y =y)

¢ Don’t know value of y before observing it!
¢ Conditional entropy:

HX|Y) = ZP HX|Y =y)

¢ Expected mformatlon gain (aka mutual information):

I(X;Y)=H(X)-HX|Y)
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Properties of entropy and infogain
Dol wle = POLYS= TR P LY ()
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Maximizing information gain
o Given: finite set V of locations [ (4) = T (X, 7)

o Want: | A™d V such that
A* = argmax F(A) J

| A<k @ @ é@
Typically NP-hard!
Greedy algorithm: @g@\@\
2

Start with A = {}

Fori=1tok
s* := argmax, F(A U {s})
A:=AU/{s*}

How well can this simple heuristic do? ST



Performance of greedy

©

oo

N

Greedy | Temperature data
‘rom sensor network

(0))

(&)

Mutual information

1N

1 2 3 4 5
Number of sensors placed

¢ Greedy empirically close to optimal. Why?
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Key observation: Diminishing returns

Placement A={Y, Y,} Placement B ={Y,,..., Yc}

V.4 4 V.4 g» 4
v, 2

Adding Y’ will help a lot! @ Adding Y’ doesn’t help much

New sensor Y’
teY <arge improvement|

Submodularity:
+ oY <Sma|l improvement |

For AuB, F(AU{Y’'})—F(A) =2 F(B U {Y’}) — F(B)
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One reason submodularity is useful

Theorem [Nemhauser et al ‘78]

Greedy algorithm gives constant factor approximation
( greedy) > (1 1/e) F(Aopt)

¢ Greedy algorithm gives near-optimal solution!
¢ Isinformation gain submodular?
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Non-submodularity of information gain

Y., Y, ~ Bernoulli(0.5)
X=Y, XORY,

Let F(A) = I(Y,; X) = H(X) = H(X| Y,
X~ Blos)  H(x) =)
XY=y o o) H(XLY)= |
K=y reve  HXTnp)=0 4,

F(83) = Hx)-H(¥=0 F(z9.953) sHKly %) =)
F(LYy) = HOO-HOAY) < O /

‘. \"{ e YL :
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Example: Submodularity of info-gain

Y Y Xyq, oo, X discrete RVs
F(A) = 1(X; Xa) = H(Y)-H(Y | X,)
e However, NOT always submodular

Theorem
If Y. are all conditionally independent given X,
then F(A) is submodular!

Hence, greedy algorithm works!

In fact, NO algorithm can do better
than (1-1/e) approximation! .




Case study: Bwldmg a Sensmg Chair

¢ Activity recognition in
assistive technologies

¢ Seating pressure as
user interface

Equipped with
4~ 1 sensor per cm?!

‘Q Costs $6,000!

Can we get similar

Leah Lea Slouh

| left forward
gccuracy with fewer, 82% accuracy on

cheaper sensors? 10 postures! "



How to place sensors on a chair?

¢ Sensor readings at locations V as random variables
¢ Predict posture X using probabilistic model P(Y,V)
¢ Pick sensor locations A* U V to minimize entropy:

A* = argmax I(X;Y 4)

Possible locations V |A| <k

«— Placed sensors, did a user study:

Accuracy Cost
Before 82% $6,000 ®
After
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Adaptive Optimization

o So far: Search for a most informative set of variables
(e.g., sensor placement).

¢ In many applications, want to adaptively choose
observations:

Interested in a policy (decision tree), not a set.
45



Adaptive greedy algorithm

» Expected benefit of adding test s after we've seenY, =y,
A(s | ya) = H(X | ya) ZP ys | y)H(X | ya,ys)

Adaptive Greedy algorithm:
Start with A = ()
Fori=1:k
o Pick Sk € argmax A(s|ya)
o Observe Ys, = ys,
o Set A+ AU{s;}
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Gathering information for making decisions

¢ So far: Selecting variables which decrease the uncertainty
the most

¢ Often, want to gather information to take the right action
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Value of information

Should we raise a fire alert? @ il
CNH
Actions 1emp- X Fiery hot normal/cold
No alarm -SSS 0
Raise alarm S -S

Only have belief about temperature P(X = hot | obs)
=» choose a* = argmax, ), P(x]|obs) U(x,a)

Decision theoretic value of (perfect) information
Reward[ P(X | obs) ] = MEU(X]|obs) = max, > P(x]obs) U(x,a)
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Value of information [Lindley ’56, Howard ’64]

For a set A of variables, its expected value of information is

F(A) =3, P(Ya) MEU[X [y,]

~
Observations Max. expected utility
made by sensors A when observing
YaA=Ya

Unfortunately, value of information is not submodular
Greedy algorithm can fail arbitrarily badly
Can do better with look-ahead
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Maximizing value of information

[Krause, Guestrin ‘05]
o Want to find a subset A* of V, |A*| <k s.t.

A* = argmax <y F(A)

Theorem: Complexity of optimizing value of information

-0y XE XK

For chains (HMMs, etc.) For trees:

Optimally solvable in polytime © @ NPPP complete
®
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