Introduction to Artificial Intelligence

Lecture 14 – Information gathering

CS/CNS/EE 154

Andreas Krause

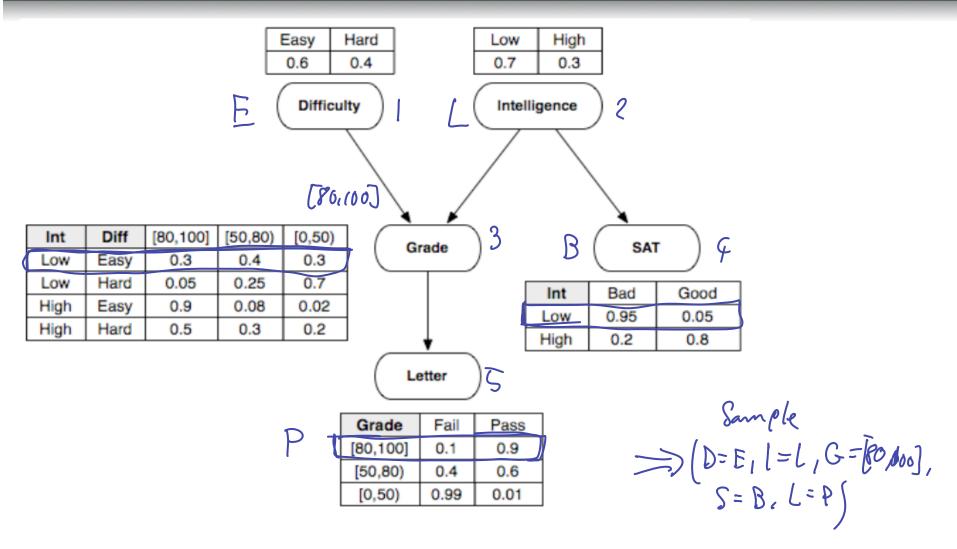
Announcements

- Homework 2 due today
- Homework 3 out later this week
- Final project due December 1
- Code released on Monday (Nov 15)
- Note on midterm grades (Avian Asker)

Sampling based inference

- So far: deterministic inference techniques
 - Variable elimination
 - (Loopy) belief propagation
- Will now introduce stochastic approximations
 - Algorithms that "randomize" to compute expectations
 - In contrast to the deterministic methods, guaranteed to converge to right answer (if wait looong enough..)
 - More exact, but slower than deterministic variants

Forward sampling from a BN



Rejection sampling

Collect samples over all variables

$$\widehat{P}(\mathbf{X}_A = \mathbf{x}_A \mid \mathbf{X}_B = \mathbf{x}_B) \approx \frac{Count(\mathbf{x}_A, \mathbf{x}_B)}{Count(\mathbf{x}_B)}$$

- Throw away samples that disagree with x_B
- Can be problematic if $P(X_B = X_B)$ is rare event

Sample complexity for probability estimates

Absolute error:

$$Prob(|\widehat{P}(\mathbf{x}) - P(\mathbf{x})| > \varepsilon) \le 2\exp(-2N\varepsilon^2)$$

Relative error:

$$Prob\Big(\widehat{P}(\mathbf{x})<(1+\varepsilon)P(\mathbf{x})\Big)\leq 2\exp(-NP(\mathbf{x})\varepsilon^2/3)$$
 if P(x) exponentially small, need Nexponentially lage

Sampling from rare events

- Estimating conditional probabilities $P(X_A \mid X_B = x_B)$ using rejection sampling is hard!
 - The more observations, the unlikelier $P(X_B = x_B)$ becomes
- Want to directly sample from posterior distribution!

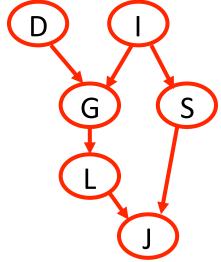
Gibbs sampling

- Start with initial assignment $\mathbf{x}^{(0)}$ to all variables
- For t = 1 to ∞ do
 - Set $x^{(t)} = x^{(t-1)}$
 - For each variable X_i
 - Set $\mathbf{v_i}$ = values of all $\mathbf{x^{(t)}}$ except $\mathbf{x_i}$
 - Sample $x^{(t)}_{i}$ from $P(X_{i} | \mathbf{v}_{i})$
- For large enough t, sampling distribution will be "close" to true posterior distribution!
- Key challenge: Computing conditional distributions P(X_i | v_i)

Gibbs Sampling

Gibbs sampling $P(D,I,G,S,L \mid J = 1)$

Iter	D	I	G	S	L	J
1	0	1	1	0	0	1
2	* 0 6	N. W.	0	0	L	1
3	0	0		0	6	1
4	Q	0	(O	l	1
•••						



$$P(G;I) = \frac{1}{6}$$

$$= \frac{1}{6} P(D \mid I = I \mid G = I \mid S = 0 \mid J = I)$$

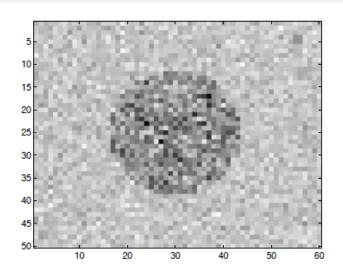
$$= \frac{1}{6} P(D \mid I = I \mid G = I \mid S = 0 \mid J = I) = I$$

$$= \frac{1}{6} P(D \mid I = I \mid G = I \mid D \mid I = I) P(G = I \mid D \mid I = I) P(J = I \mid I = 0 \mid S = 0)$$

$$= \frac{1}{6} P(D \mid P(G = I \mid D \mid I = I) P(G = I \mid P \mid I = I) P(J = I \mid I = 0 \mid S = 0)$$

$$= \frac{1}{6} P(D) P(G = I \mid D \mid I = I)$$

Example: (Simple) image segmentation

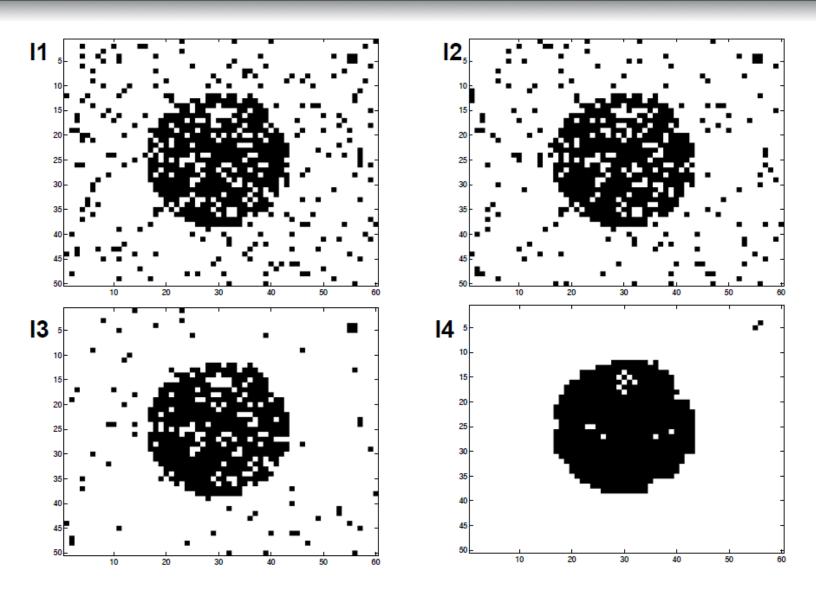


$$P(x) = \frac{1}{Z} \prod_{i} \Phi(x_i) \prod_{(j,k) \in E} \Psi(x_j, x_k)$$

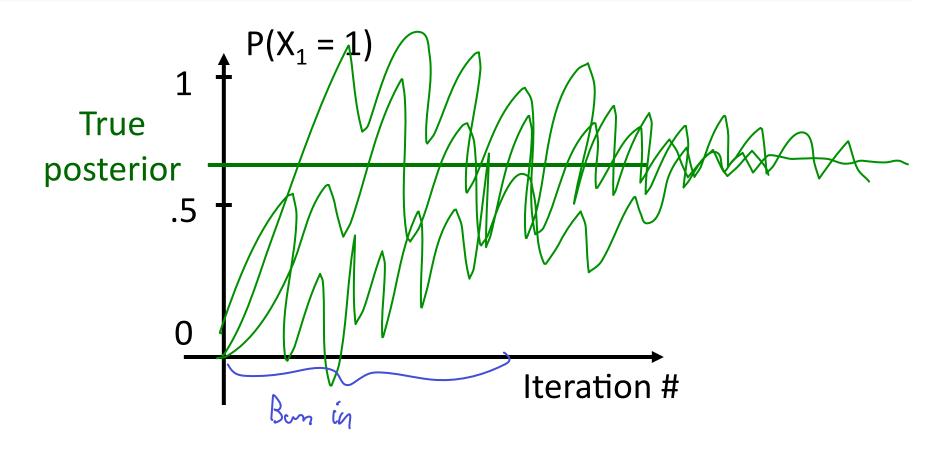
$$\Phi(x_i) = exp\left\{-\frac{(y_i - \mu_{x_i})^2}{2\sigma_{x_i}^2}\right\}$$

$$\Psi(x_i, x_j) = \exp\left\{-\beta(x_i - x_j)^2\right\}$$

Gibbs Sampling iterations



Convergence of Gibbs Sampling



Summary: Inference

- For tree-structured Bayes nets, can compute exact marginals
 - Variable elimination
 - Belief propagation (efficiently computes all marginals)
- For loopy networks, can use approximate inference
 - Loopy belief propagation (may not converge)
 - Gibbs sampling (will converge, but may take long time)

Information gathering

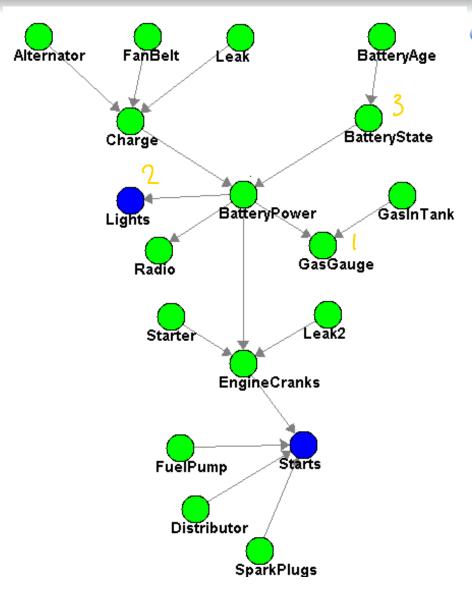
So far:

- Bayesian networks for quantifying uncertainty in real world environments
- Exact and approximate algorithms for inference in Bayesian networks (e.g., compute P(Pit | Breezes))

Now:

 Selecting most "informative" variables for making effective predictions / decisions

Why does my car not start?



 Selectively run tests to diagnose cause of failure

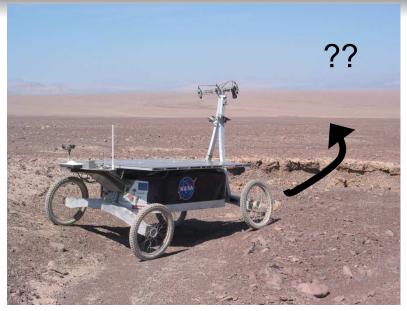
Clinical diagnosis?

- Patient either healthy or ill
- Can choose to treat or not treat

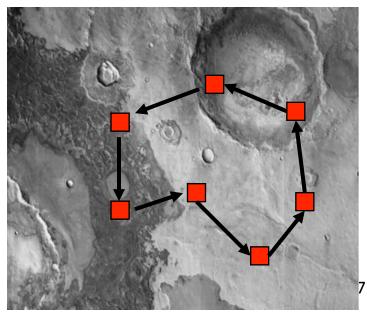
	healthy	ill
Treatment	-\$\$	\$
No treatment	0	-\$\$\$

- Only know distribution P(ill | observations)
- Can perform costly medical tests to reveal aspects of the condition
- Which tests should we perform to most costeffectively diagnose?

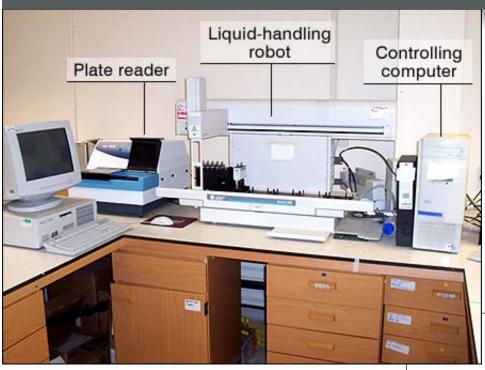
Autonomous robotic exploration



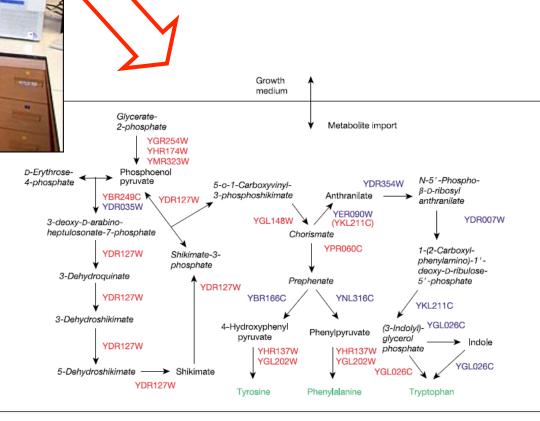
- Limited time for measurements
- Limited capacity for rock samples
- Need optimized information gathering!

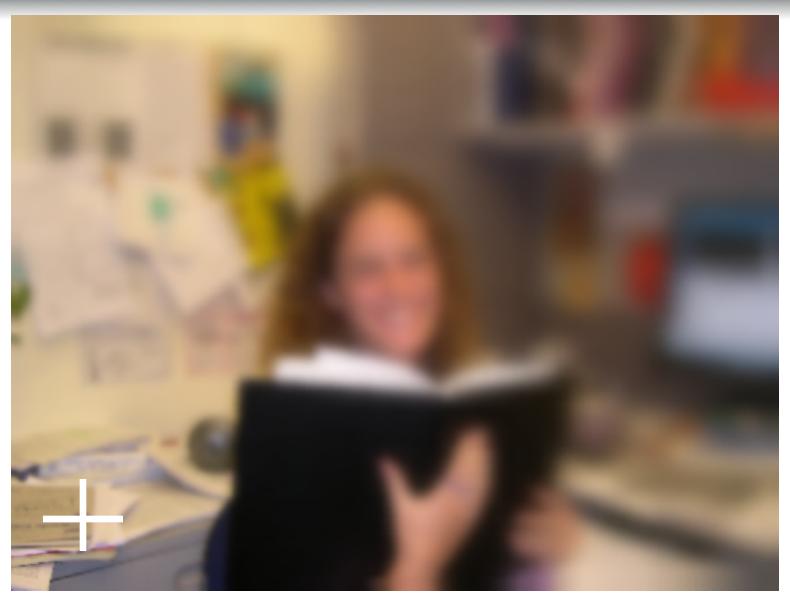


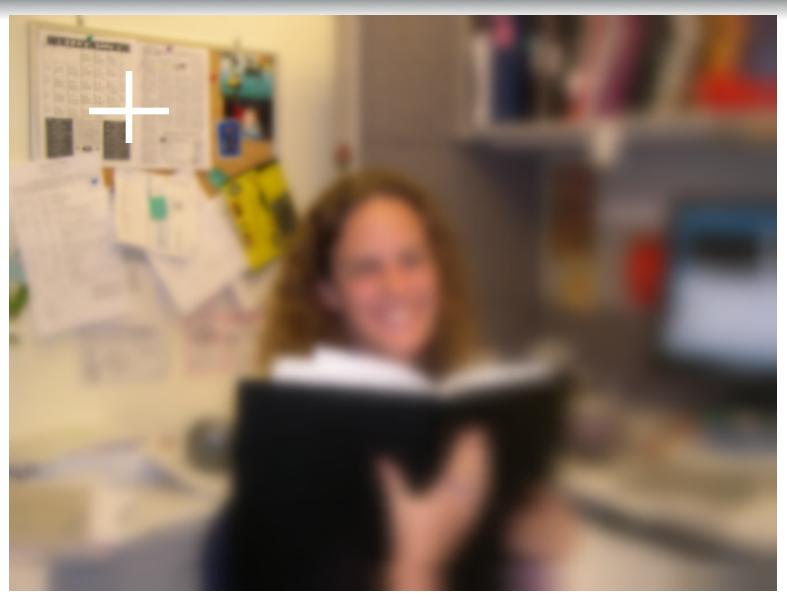
A robot scientist

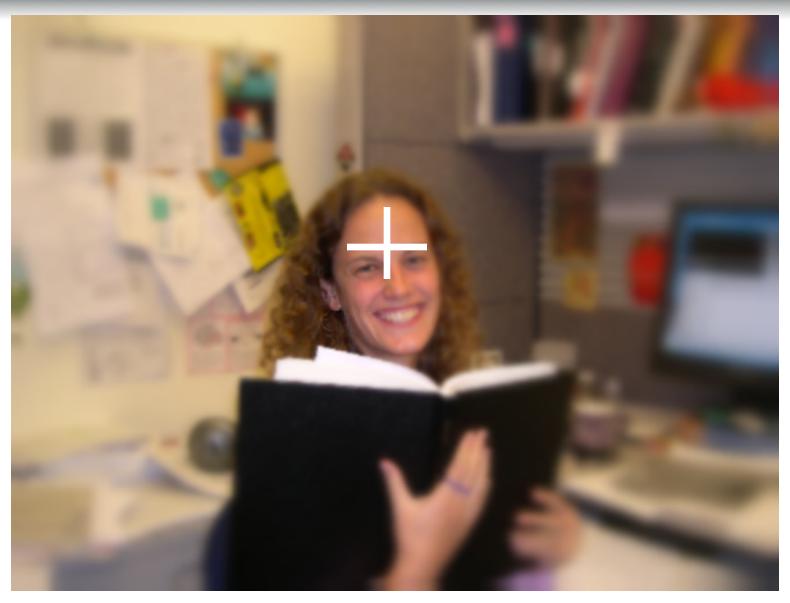


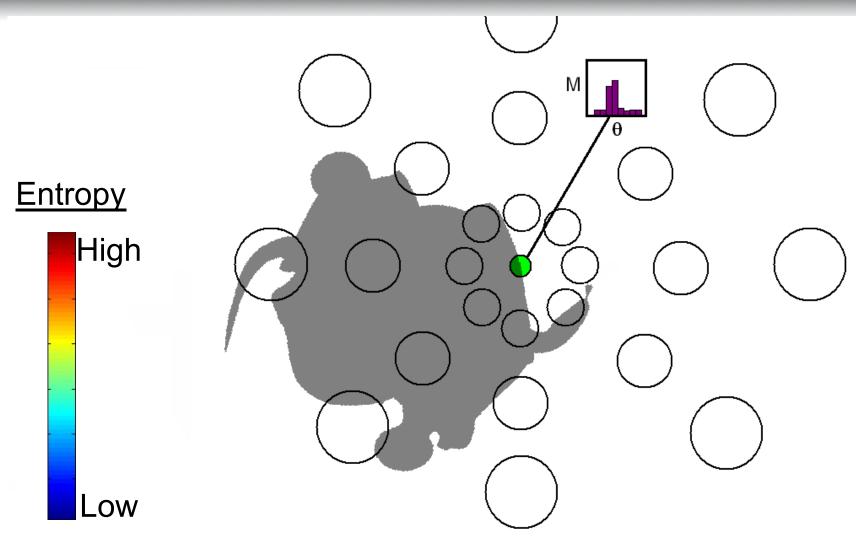
King et al, Nature '04

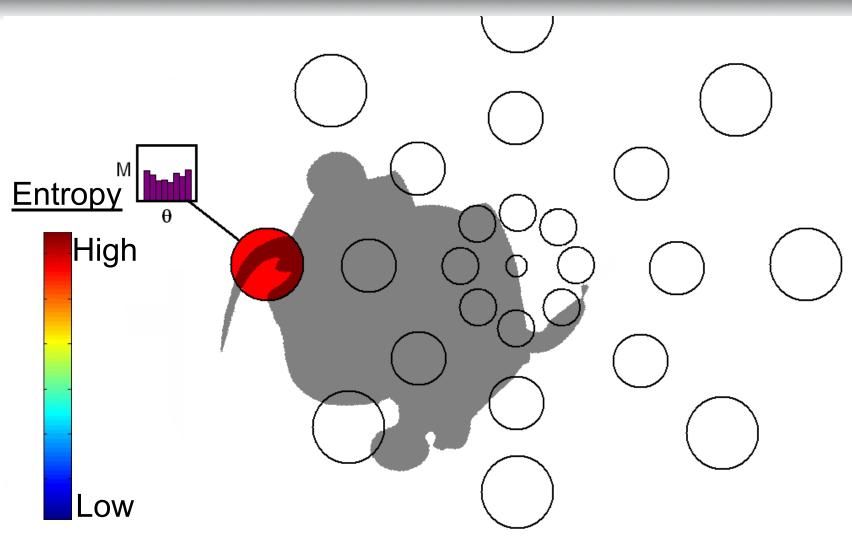


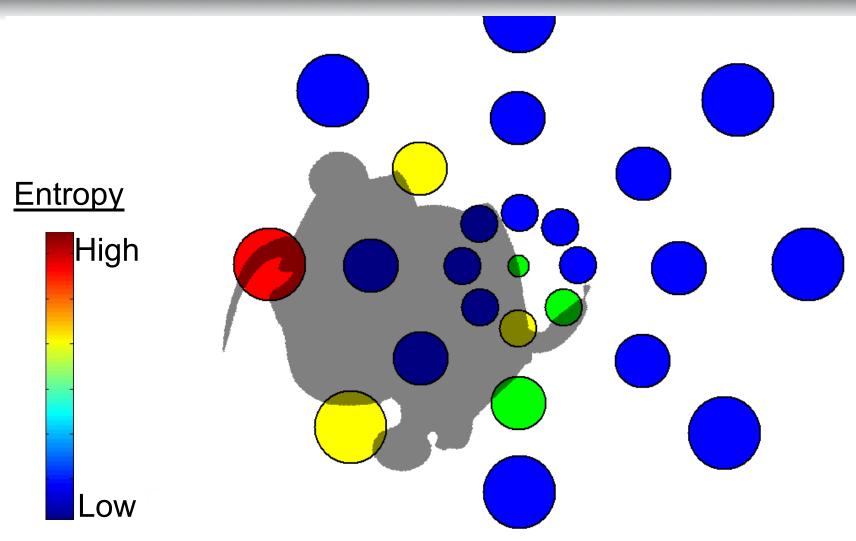




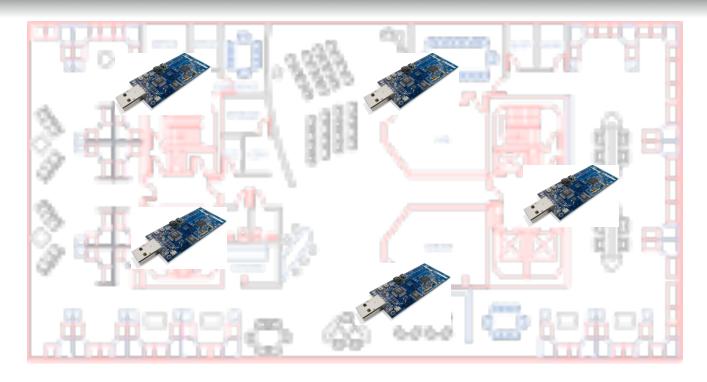






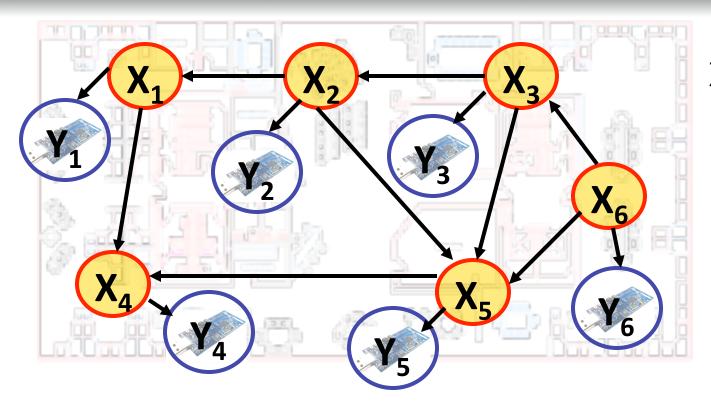


Running example: Detecting fires



Want to place sensors to detect fires in buildings

Monitoring using Bayesian Networks



X_s: temperature at location s

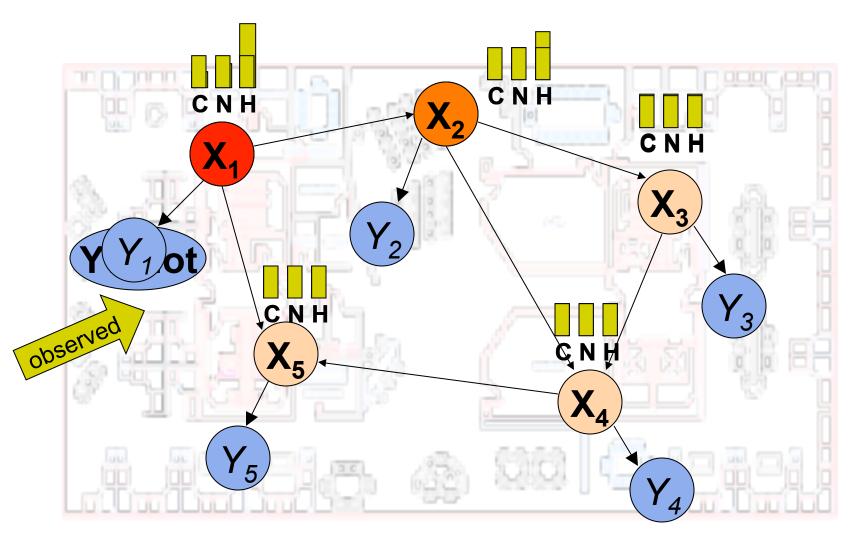
Y_s: sensor value at location s

$$Y_s = X_s + noise$$

Joint probability distribution

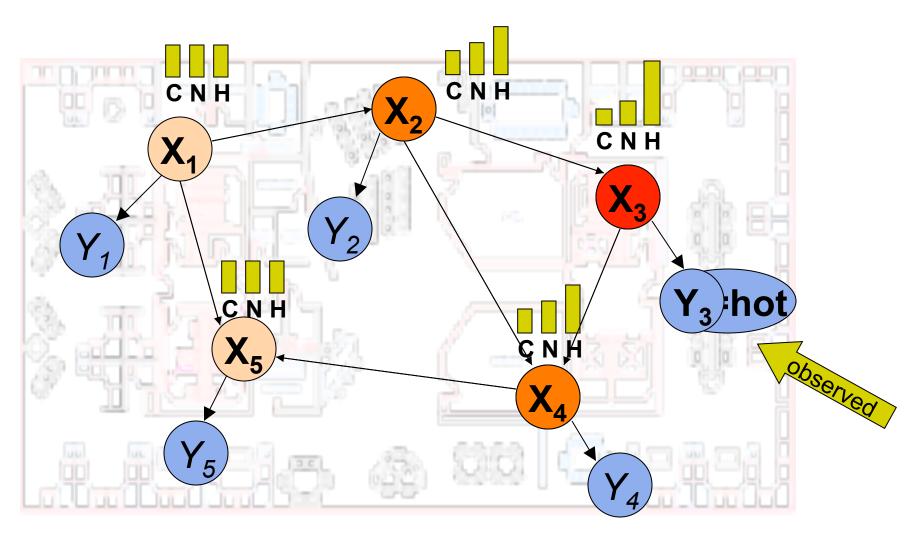
$$P(X_1,...,X_n,Y_1,...,Y_n) = P(X_1,...,X_n) P(Y_1,...,Y_n | X_1,...,X_n)$$
Prior Likelihood

Making observations



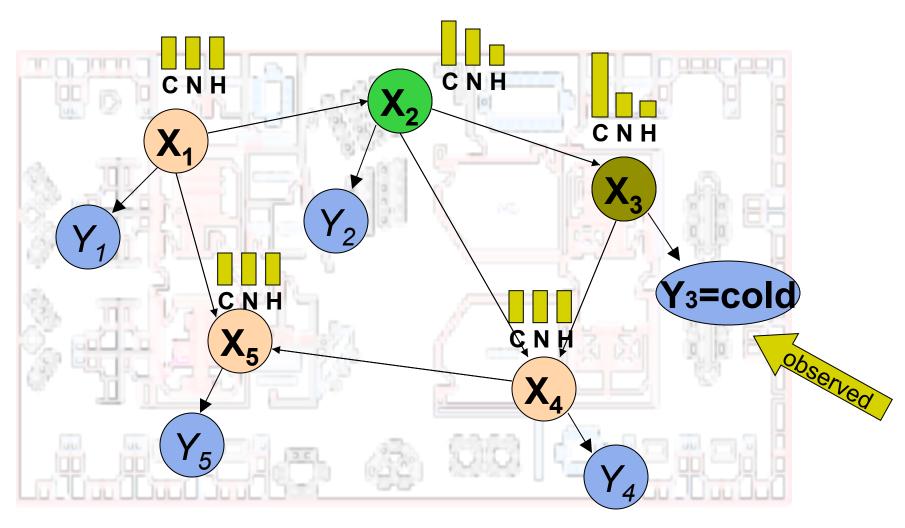
Less uncertain \rightarrow Reward[P(X|Y₁=hot)] = 0.2

Making observations



Reward[$P(X|Y_3=hot)$] = 0.4

A different outcome...



Reward[$P(X|Y_3=cold)$] = 0.1

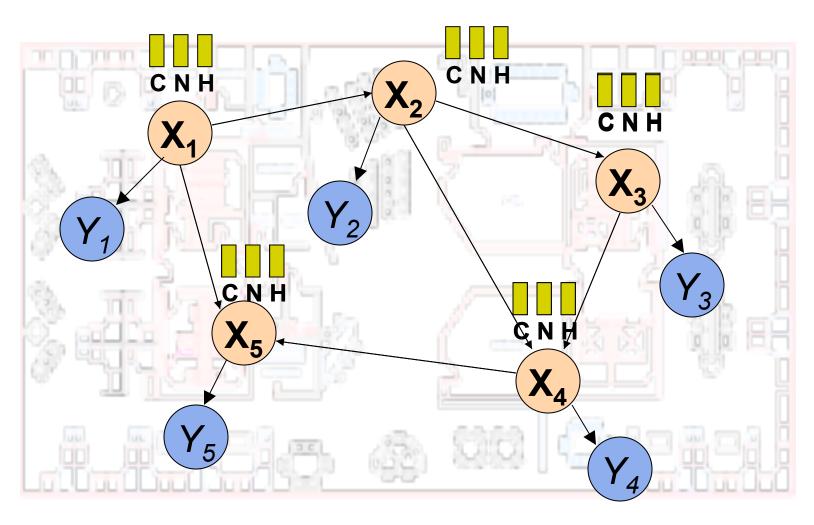
Reducing uncertainty

- Want to select observations that maximize reduction in uncertainty
- Can quantify uncertainty using Shannon entropy:

$$H(X) = -\sum_{x} P(X = x) \log_2 P(X = x)$$

- For discrete variables $0 \le H(X) \le \log_2 |dom(X)|$ Ses. $P(X = x) = \frac{1}{n} \implies H(X) = -n \cdot \frac{1}{n} \log_2 \frac{1}{n} = \log_2 n$
- Thus, can use Reward[P(X)] = -H(X) = $\sum_{x} P(x) \log_2 P(x)$

Making observations



Prior entropy: $H(\mathbf{X}) \approx 4.2$

Posterior entropy

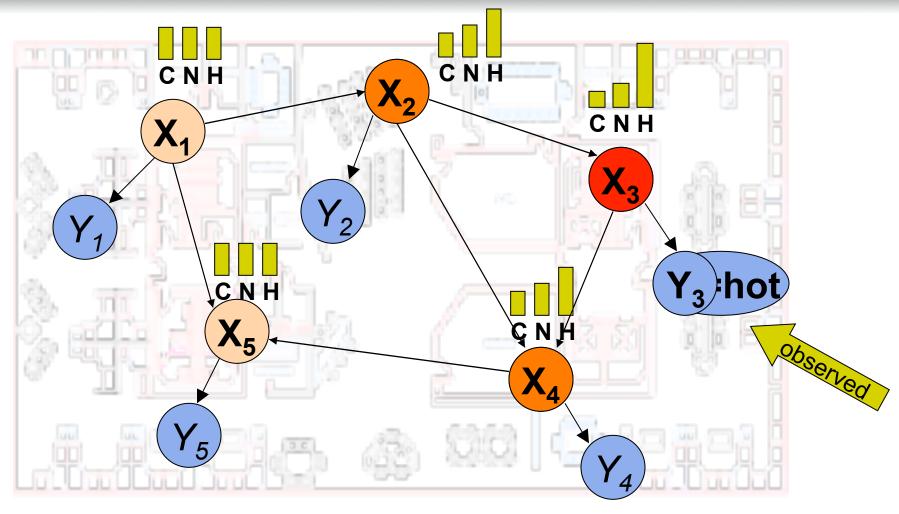
• Entropy before observations:

$$H(X) = -\sum_{x} P(X = x) \log_2 P(X = x)$$

Entropy after observing Y = y:

$$H(X \mid Y = y) = -\sum_{x} P(X = x \mid Y = y) \log_2 P(X = x \mid Y = y)$$

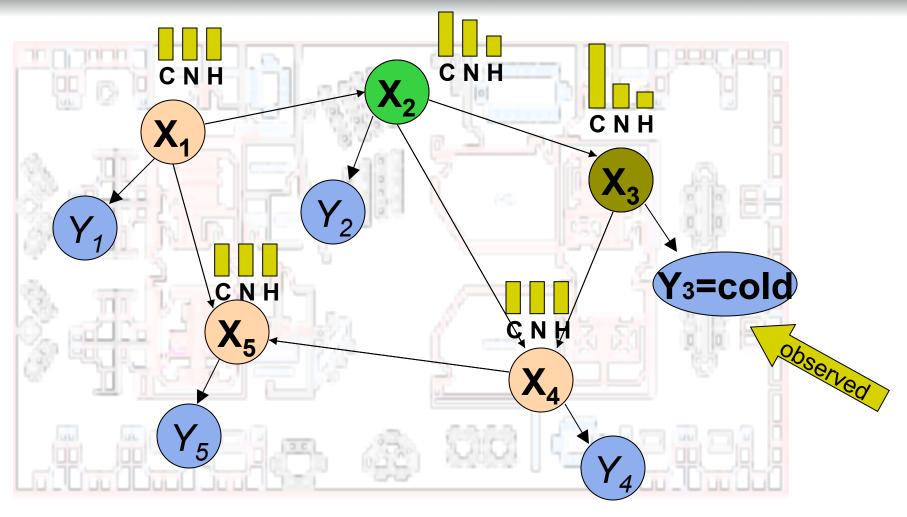
Making observations



Posterior entropy $H(\mathbf{X} \mid Y_3 = hot) \approx 2.7$

Reward: $H(\mathbf{X}) - H(\mathbf{X} \mid Y_3 = hot) \approx 1.5$

A different outcome...



Posterior entropy $H(\mathbf{X} \mid Y_3 = cold) \approx 3.2$ Reward: $H(\mathbf{X}) - H(\mathbf{X} \mid Y_3 = cold) \approx 1.0$

Information gain

• Entropy after observing Y = y:

$$H(X \mid Y = y) = -\sum_{x} P(X = x \mid Y = y) \log_2 P(X = x \mid Y = y)$$

- Don't know value of y before observing it!
- Conditional entropy:

$$H(X \mid Y) = \sum_{y} P(y)H(X \mid Y = y)$$

• Expected information gain (aka mutual information):

$$I(X;Y) = H(X) - H(X \mid Y)$$

Properties of entropy and infogain

Prod. rule:
$$P(X_1Y) = P(Y) \cdot P(Y|X)$$

 $H(X_1Y) = H(X) + H(Y|X)$
 $H(X_1...X_n) = H(X_1) + H(X_2(X_1) + H(X_3(X_{2,1}) + ... + H(X_n(X_{1,1}X_{n-1}) + ...$

$$T(X;Y) \ge 0$$

$$T(X;Y) = 0 \quad \text{iff} \quad X + Y$$

$$T(X;Y) = H(X) - H(X|Y) = H(X) + H(Y) - H(X;Y)$$

$$H(X;Y) - H(Y)$$

$$= T(Y;X)$$

Maximizing information gain

- Given: finite set V of locations
- Want:

$$\mathbf{A}^* \mathbf{\mu} \, \mathbf{V} \, \mathbf{such that}$$
 $\mathcal{A}^* = \operatorname*{argmax} F(\mathcal{A})$
 $|\mathcal{A}| \leq k$

Typically NP-hard!

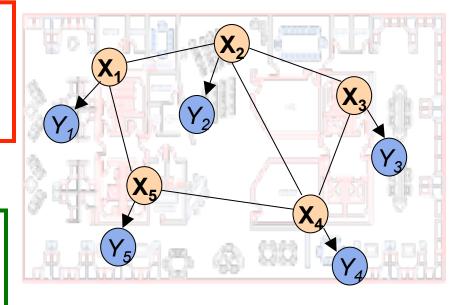
Greedy algorithm:

For
$$i = 1$$
 to k

$$s^* := argmax_s F(A U \{s\})$$

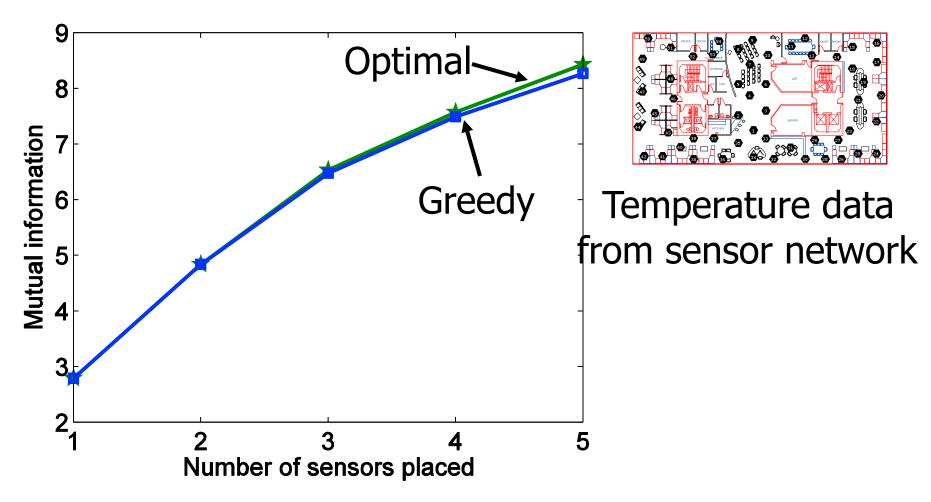
$$A := A \cup \{s^*\}$$

$$F(A) = I(X; Y_A)$$



How well can this simple heuristic do?

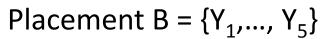
Performance of greedy

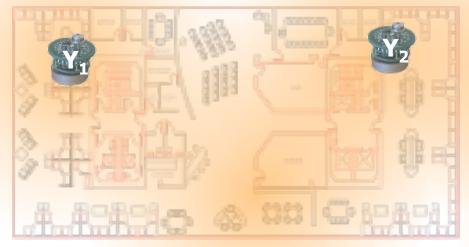


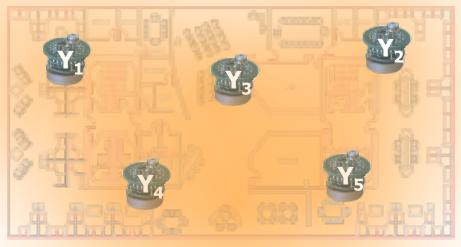
• Greedy empirically close to optimal. Why?

Key observation: Diminishing returns

Placement A = $\{Y_1, Y_2\}$





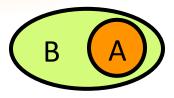


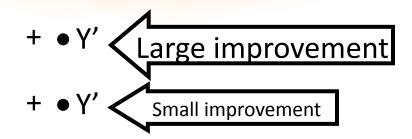
Adding Y' will help a lot!

Adding Y' doesn't help much

New sensor Y'

Submodularity:





For A μ B, F(A U {Y'}) – F(A) \geq F(B U {Y'}) – F(B)

One reason submodularity is useful

Theorem [Nemhauser et al '78]

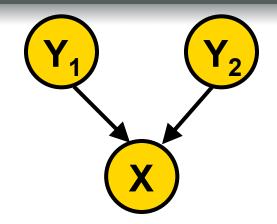
Greedy algorithm gives constant factor approximation

$$F(A_{greedy}) \ge (1-1/e) F(A_{opt})$$

- Greedy algorithm gives near-optimal solution!
- Is information gain submodular?

Non-submodularity of information gain

$$Y_1$$
, $Y_2 \sim Bernoulli(0.5)$
 $X = Y_1 XOR Y_2$



Let
$$F(A) = I(Y_A; X) = H(X) - H(X|Y_A)$$

$$X \sim B(0.5)$$
 $H(x) = 1$

$$X = Y_1 \times OR Y_2$$
 $H(X|Y_1,Y_2) = 0$

$$F(ii) = H(x)-H(x)=0$$

 $F(ii) = H(x)-H(x|yi) = 0$
 $F(ii) = H(x)-H(x|yi) = 0$
 $F(ii) = H(x)-H(x|yi) = 0$

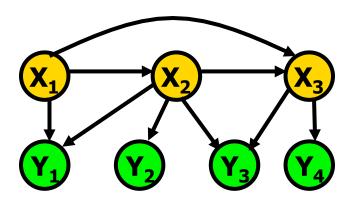
Example: Submodularity of info-gain

$$Y_1,...,Y_m, X_1, ..., X_n$$
 discrete RVs
 $F(A) = I(X; X_A) = H(Y)-H(Y | X_A)$

However, NOT always submodular

Theorem

If Y_i are all conditionally independent given X, then F(A) is submodular!



Hence, greedy algorithm works!

In fact, NO algorithm can do better than (1-1/e) approximation!

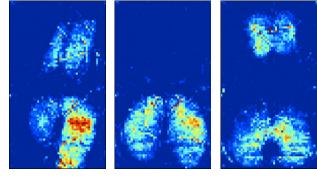
Case study: Building a Sensing Chair

- Activity recognition in assistive technologies
- Seating pressure as user interface

Equipped with 1 sensor per cm²!

Costs \$6,000!

Can we get similar accuracy with fewer, cheaper sensors?



Lean Slouch Lean left forward 82% accuracy on 10 postures!

How to place sensors on a chair?

- Sensor readings at locations V as random variables
- Predict posture X using probabilistic model P(Y,V)
- Pick sensor locations A* µ V to minimize entropy:

Possible locations V

$$\mathcal{A}^* = \operatorname*{argmax} I(X; \mathbf{Y}_A)$$

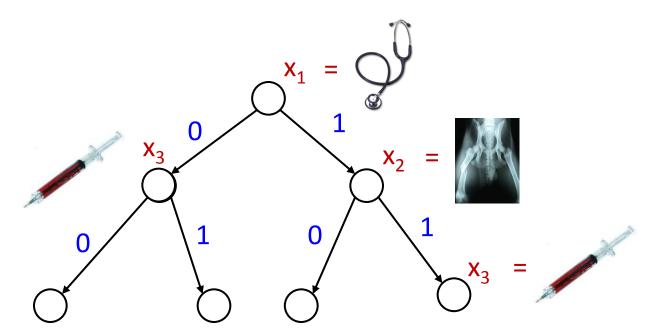
$$|\mathcal{A}| \le k$$

Placed sensors, did a user study:

	Accuracy	Cost
Before	82%	\$6,000 😢
After		

Adaptive Optimization

- So far: Search for a most informative set of variables (e.g., sensor placement).
- In many applications, want to adaptively choose observations:



Interested in a *policy* (decision tree), not a *set*.

Adaptive greedy algorithm

• Expected benefit of adding test s after we've seen $Y_A = y_{A}$.

$$\Delta(s \mid \mathbf{y}_A) = H(\mathbf{X} \mid \mathbf{y}_A) - \sum_{y_s} P(y_s \mid \mathbf{y}_A) H(\mathbf{X} \mid \mathbf{y}_A, y_s)$$

Adaptive Greedy algorithm:

Start with
$$A = \emptyset$$

- Pick $s_k \in \arg\max_s \Delta(s \mid \mathbf{y}_A)$
- Observe $Y_{s_k} = y_{s_k}$
- Set $A \leftarrow A \cup \{s_k\}$

Gathering information for making decisions

 So far: Selecting variables which decrease the uncertainty the most

Often, want to gather information to take the right action

Value of information

Should we raise a fire alert?

Temp. X Actions	Fiery hot	normal/cold
No alarm	-\$\$\$	0
Raise alarm	\$	-\$

Only have belief about temperature P(X = hot | obs)

 \rightarrow choose a* = argmax_a $\sum_{x} P(x | obs) U(x,a)$

Decision theoretic value of (perfect) information

Reward[P(X | obs)] = MEU(X | obs) = max_a \sum_{x} P(x | obs) U(x,a)

Value of information [Lindley '56, Howard '64]

For a set A of variables, its expected value of information is

$$F(A) = \sum_{\mathbf{y}_{A}} P(\mathbf{y}_{A}) MEU[\mathbf{X} \mid \mathbf{y}_{A}]$$

Observations made by sensors **A**

Max. expected utility when observing $Y_{\Delta} = y_{\Delta}$

Unfortunately, value of information is not submodular Greedy algorithm can fail arbitrarily badly Can do better with look-ahead

Maximizing value of information

[Krause, Guestrin '05]

• Want to find a subset A^* of V, $|A^*| \le k$ s.t.

$$A^* = \operatorname{argmax}_{|A| \le k} F(A)$$

Theorem: Complexity of optimizing value of information

