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Announcements

¢ Homework 2 out; due Nov 10.
o Milestone due Nov 3



Probabilistic propositional logic

¢ Suppose we would like to express uncertainty about
logical propositions

o Birds can typically fly P(Bird = CanFly) = .95

» Propositional symbols = Bernoulli random variables

o Specify P(Bird =0b,CanFly = f)
forall b, f € {true, false}

¢ Probability of a proposition ¢ is the probability mass
of all models of ¢ (i.e., all w that make ¢ true)

¢ Allows us to avoid specifying large numbers of
excepts (“Birds can fly unless X and ...”)



Random variables

¢ Bernoulli distribution: “(biased) coin flips”
D ={H,T}
Specify P(X=H) =p. ThenP(X=T) = 1-p.
Note: can identify atomic events w with {X=H}, {X=T}
o Binomial distribution counts the number of heads S
p(S=k) = []2) o [1p)™
o Categorical distribution: “(biased) m-sided dice”
D={1,...,m}
Specify P(X=i)=p, s.t. ), p;=1
¢ Multinomial distribution counts the number of
outcomes for each side



Joint distributions

¢ Instead of random variable, have randonz vector
X(w) =[X1(w),..., Xn(w)] € D
o Can specify P(X;=xy,...,X =X, ) directly
(atomic events are assignments xg,...,X.)

¢ Joint distribution describes relationship among all
variables

¢ Example:

toothache = toothache

catch| = catch} catch| — catch

cavity | .108 | .012 .072| .008
=1 cavity | .016 | .064 144 | .576




Problems with high-dim. distributions

¢ Suppose we have n propositional symbols

¢ How many parameters do we need to specify
P(X,=x,,...,X,=x,)?

X, X, X | X, P(X)
0 0 0 0 01

0 0 1 0 .001
0 0 1 1 213
1 1 1 1 .0003

2"-1 parameters! ®



Marginal distributions

» Suppose we have joint distribution P(X,,...,X.)
¢ Then
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Independent RVs

¢ What if RVs are independent?
P(X,=x,,...,X,=x,) = P(x,) P(x,) ... P(x,)

¢ How many parameters are needed in this case?
W

» How about computing P(x,)?

ndepe DX [ V,2) = D)

¢ Independence too strong assumption... Is there
something weaker?



Key concept: Conditional independence

» How many parameters? P(Toothache,Cavity, Catch)

¢ If | know there’s a cavity, knowing toothache won’t
help predict whether the probe catches

e P(Catch | Cavity, Toothache) = P(Catch | Cavity)
for all values of Catch, Cavity and Toothache



Key concept: Conditional independence

» Random variables X and Y cond. indep. given Z if

forallx,vy, z:

PX=x,Y=y | Z=2z)=P(X=x|Z=2)P(Y=y]| Z=2)

o If P(Y=y |Z=2)>0, that’s equivalent to
PX=x|Z=2Y=y)=P(X=x|7Z=2)

Similarly for sets of random variables X, Y, Z

We write:

P

=X 1Y |Z
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Properties of Conditional Independence

¢ Symmetry

X1lY|Z=Y LX|Z
¢ Decomposition
X1YW|Z=X1Y|Z
¢ Contraction
XLY|Z)ANXLWI|Y,Z)=X1LYW|Z
¢ Weak union
X1YW|Z=X1Y|Z W
¢ Intersection
XLY W, Z)ANXLWI|Y,Z)=X1Y,W|Z
Holds only if distribution is positive, i.e., P>0
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Example: Naive Bayes Models

¢ Suppose we have multiple effects with a single cause

o E.g.: Flu causes fever, runny nose, cough, ...
¢ Effects are conditionally independent given cause
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Inference in the Naive Bayes model
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Does this work in general?

¢ Conditional parameterization
(instead of joint parameterization)

» For each RV, specify P(X. | XA) for set X, of RVs
¢ Then use chain rule to get joint parametrization

POt x) =Trp(¥ 1Xa,)

{At[
¢ Number of parameters? = ? L
¢ Have to be careful to guarantee legal distribution...
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Bayesian networks

¢ Compact representation of distributions over large
number of variables

¢ (Often) allows efficient exact inference (computing

marginals, etc.)
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Causal parametrization

¢ Graph with directed edges from (immediate) causes
to (immediate) effects D A
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Bayesian networks

¢ A Bayesian network structure is a
directed, acyclic graph G, where each vertex s of G is
interpreted as a random variable X_ (with unspecified
distribution)

¢ A Bayesian network (G,P) consists of
e A BN structure G and ..

¢ ..a set of conditional probability distributions (CPTs)
P(X, | Paxs), where Pay_are the parents of node X such that

¢ (G,P) defines joint distribution
P(X1,...X,) = ][ P(X; | Pay,)
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Bayesian networks

o Can every probability distribution be described by a BN?
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Representing the world using BNs

True distribution P’ B S B
with cond. ind. |(P’) Bayes net (G,P)
with I(P)

¢ Want to make sure that I(P) is a subset of I(P’)

¢ Need to understand conditional independence
properties of BN (G,P)
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Defining a Bayes Net

¢ Given random variables and known conditional
independences

» Pick ordering X,,..., X, of the variables

o For each X

o Find minimal subset A of {X,,... X, ;}suchthat X; | X 7 | X4
where A= {1,... a}\(AU{i})
e Specify / learn P(X. | A)

Theorem: Bayes’ Nets defined this way are sound
e Does only encode cond. indep. present in P

Ordering matters a lot for compactness of

representation! More later this course.
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¢ Suppose we use the ordering

JohnCalls, MaryCalls, Alarm, Burglary, E(alhggake
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Which kind of Cl does a BN imply?
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Which kind of Cl does a BN imply?
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BNs with 3 nodes
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BNs with 3 nodes

Indirect causal effect

O—0O—G

Indirect evidential effect
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Common cause Common effect
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Active trails

¢ When are A and | independent?
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Active trails

¢ An undirected path in BN structure G is called
active trail for observed variables O p {X,,..., X}, if for
every consecutive triple of vars X,Y,Z on the path
e X>Y > ZandY is unobserved (Y & O)
e X< Y& Zand Y is unobserved (Y & O)
e X< Y > ZandY isunobserved (Y & 0O)
e X2Y < Zand Y orany of Y’s descendants is observed

» Any variables X; and X; for which there is no active trail
for observations O are called d-separated by O
We write d-sep(X;X; | O)

o Sets A and B are d-separated given O if d-sep(X,Y | O)
forall X In A, Y In B. Write d-sep(A; B | O)
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