Introduction to Artificial Intelligence

Lecture 11 – Bayesian Networks

CS/CNS/EE 154

Andreas Krause

Announcements

- Homework 2 out; due Nov 10.
- Milestone due Nov 3

Probabilistic propositional logic

- Suppose we would like to express uncertainty about logical propositions
- Birds can typically fly $P(Bird \Rightarrow CanFly) = .95$
- Propositional symbols Bernoulli random variables
 - Specify P(Bird=b,CanFly=f) for all $b,f\in\{true,false\}$
- Probability of a proposition ϕ is the probability mass of all models of ϕ (i.e., all ω that make ϕ true)
- Allows us to avoid specifying large numbers of excepts ("Birds can fly unless X and ...")

Random variables

Bernoulli distribution: "(biased) coin flips"

$$D = \{H,T\}$$

Specify P(X = H) = p. Then P(X = T) = 1-p.

Note: can identify atomic events ω with {X=H}, {X=T}

- Binomial distribution counts the number of heads S $\rho(S = k) = \binom{n}{k} p^k (l-p)^{n-k}$
- Categorical distribution: "(biased) m-sided dice"D = {1,...,m}

Specify
$$P(X = i) = p_i$$
, s.t. $\sum_{i} p_i = 1$

 Multinomial distribution counts the number of outcomes for each side

Joint distributions

• Instead of random variable, have random vector $\mathbf{X}(\omega) = [X_1(\omega), \dots, X_n(\omega)] \in \mathcal{D}$

- Can specify $P(X_1=x_1,...,X_n=x_n)$ directly (atomic events are assignments $x_1,...,x_n$)
- Joint distribution describes relationship among all variables
- Example:

	toothache		¬ toothache		
	catch	¬ catch	catch	¬ catch	
cavity	.108	.012	.072	.008	
¬ cavity	.016	.064	.144	.576	

Problems with high-dim. distributions

- Suppose we have n propositional symbols
- How many parameters do we need to specify $P(X_1=x_1,...,X_n=x_n)$?

X_1	X_2	•••	X _{n-1}	X _n	P(X)
0	0	•••	0	0	.01
0	0	•••	1	0	.001
0	0	•••	1	1	.213
		•••	•••	•••	
1	1	•••	1	1	.0003

2ⁿ-1 parameters!

Marginal distributions

- Suppose we have joint distribution $P(X_1,...,X_n)$
- Then

$$P(X_i = x_i) = \sum_{x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n} P(x_1, \dots, x_n)$$

• If all X_i binary: How many terms?

Need, because

want to compute

How many terms?

$$P(X_1 = T \mid X_3 = F, X_5 = F)$$

$$P(X_1 = T, X_3 = F, X_5 = F)$$

$$P(X_3 = F, X_3 = F)$$
Margh L. E.M.

Independent RVs

What if RVs are independent?

$$P(X_1=x_1,...,X_n=x_n) = P(x_1) P(x_2) ... P(x_n)$$

How many parameters are needed in this case?

4

• How about computing $P(x_i)$?

• Independence too strong assumption... Is there something weaker?

Key concept: Conditional independence

- How many parameters? P(Toothache, Cavity, Catch)
- If I know there's a cavity, knowing toothache won't help predict whether the probe catches
- P(Catch | Cavity, Toothache) = P(Catch | Cavity)
 for all values of Catch, Cavity and Toothache

Key concept: Conditional independence

 Random variables X and Y cond. indep. given Z if for all x, y, z:

$$P(X = x, Y = y \mid Z = z) = P(X = x \mid Z = z) P(Y = y \mid Z = z)$$

If P(Y=y | Z=z)>0, that's equivalent to
 P(X = x | Z = z, Y = y) = P(X = x | Z = z)

Similarly for sets of random variables X, Y, Z

We write:

$$P \models \mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}$$

Properties of Conditional Independence

Symmetry

$$\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z} \Rightarrow \mathbf{Y} \perp \mathbf{X} \mid \mathbf{Z}$$

Decomposition

$$\mathbf{X} \perp \mathbf{Y}, \mathbf{W} \mid \mathbf{Z} \Rightarrow \mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}$$

Contraction

$$(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}) \wedge (\mathbf{X} \perp \mathbf{W} \mid \mathbf{Y}, \mathbf{Z}) \Rightarrow \mathbf{X} \perp \mathbf{Y}, \mathbf{W} \mid \mathbf{Z}$$

Weak union

$$\mathbf{X} \perp \mathbf{Y}, \mathbf{W} \mid \mathbf{Z} \Rightarrow \mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}, \mathbf{W}$$

Intersection

$$(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{W}, \mathbf{Z}) \wedge (\mathbf{X} \perp \mathbf{W} \mid \mathbf{Y}, \mathbf{Z}) \Rightarrow \mathbf{X} \perp \mathbf{Y}, \mathbf{W} \mid \mathbf{Z})$$

Holds only if distribution is positive, i.e., P>0

Example: Naïve Bayes Models

- Suppose we have multiple effects with a single cause
- E.g.: Flu causes fever, runny nose, cough, ...
- Effects are conditionally independent given cause

Cause Y

Effects
$$X_1 \dots X_n$$
 $X_A \perp X_B \mid Y$, where $A \subset \{1, \dots, n\}$
 $E_{g}: A = \{i_1, \dots i_n\}$
 $E_{g}: A = \{X_{i_1}, \dots, X_{i_n}\}$
 $E_$

Inference in the Naïve Bayes model

$$P(Y|X_{1}=T) = \frac{1}{2} P(Y_{1}|X_{1}=T) = \frac{1}{2} \sum_{X_{2}} \sum_{X_{3}} \sum_{X_{4}} \sum_{X_{5}} P(Y_{1}) P(X_{1}=T) P(X_{1}|Y_{1}) P(X_{1}|Y_{2}) P(X_{2}|Y_{2}) P(X_{2}|Y_{2}) P(X_{2}|Y_{2}) P(X_{3}|Y_{3}) P(X_{3}|Y_{3})$$

Does this work in general?

- Conditional parameterization (instead of joint parameterization)
- For each RV, specify $P(X_i \mid X_A)$ for set X_{A_i} of RVs
- Then use chain rule to get joint parametrization

$$P(X_i, X_n) = TT P(X_i | X_{A_i})$$

- Number of parameters? $= \sum_{i}^{2^{|A_{i}|}} 2^{|A_{i}|}$
- Have to be careful to guarantee legal distribution...

Bayesian networks

- Compact representation of distributions over large number of variables
- (Often) allows efficient exact inference (computing marginals, etc.)

HailFinder

56 vars

~ 3 states each

- →~10²⁶ terms
- > 10.000 years on Top supercomputers

JavaBayes applet

Causal parametrization

Graph with directed edges from (immediate) causes
 to (immediate) effects

Bayesian networks

 A Bayesian network structure is a directed, acyclic graph G, where each vertex s of G is interpreted as a random variable X_s (with unspecified distribution)

- A Bayesian network (G,P) consists of
 - A BN structure G and ..
 - ..a set of conditional probability distributions (CPTs) $P(X_s \mid \mathbf{Pa}_{X_s})$, where \mathbf{Pa}_{X_s} are the parents of node X_s such that
 - (G,P) defines joint distribution

$$P(X_1, ..., X_n) = \prod_i P(X_i \mid \mathbf{Pa}_{X_i})$$

Bayesian networks

• Can every probability distribution be described by a BN?

Representing the world using BNs

Modina

Willburdon Bi

True distribution P' with cond. ind. I(P')

Bayes net (G,P) with I(P)

- Want to make sure that I(P) is a subset of I(P')
- Need to understand conditional independence properties of BN (G,P)

Defining a Bayes Net

- Given random variables and known conditional independences
- Pick ordering X₁,...,X_n of the variables
- For each X_i
 - Find minimal subset A of $\{X_1,...,X_{i-1}\}$ such that $X_i \perp \mathbf{X}_{\bar{A}} \mid \mathbf{X}_A$ where $\bar{A} = \{1,\ldots,n\} \setminus (A \cup \{i\})$
 - Specify / learn P(X_i | A)

Theorem: Bayes' Nets defined this way are sound

Does only encode cond. indep. present in P

Ordering matters a lot for compactness of representation! More later this course.

Example

Suppose we use the ordering
 JohnCalls, MaryCalls, Alarm, Burglary, Earthquake

What if ordering is J, M, B, E, A?

Which kind of CI does a BN imply?

$$E + B = 2$$

$$P(E,B) = \sum_{ajm} P(E,B,a,jm)$$

$$= \sum_{ajm} P(E) \cdot P(B) \cdot P(a|E,B) \cdot P(j|a) \cdot P(m|a)$$

$$= P(E) P(B) \sum_{ajm} P(a|EB) P(j|a) \cdot P(m|a)$$

$$= P(E) P(B) \sum_{ajm} P(a|EB) \sum_{ajm} P(j|a) \sum_{ajm} P(m|a)$$

$$= P(E) P(B) \sum_{ajm} P(a|EB) \sum_{ajm} P(j|a) \sum_{ajm} P(m|a)$$

$$= P(E) P(B) \sum_{ajm} P(a|EB) \sum_{ajm} P(j|a) \sum_{ajm} P(m|a)$$

$$= P(E) P(B) \sum_{ajm} P(a|EB) \sum_{ajm} P(j|a) \sum_{ajm} P(m|a)$$

Which kind of CI does a BN imply?

BNs with 3 nodes

V-structures

BNs with 3 nodes

Indirect causal effect

Indirect evidential effect

Common cause

Common effect

Active trails

• When are A and I independent?

Active trails

- An undirected path in BN structure G is called active trail for observed variables O μ {X₁,...,X_n}, if for every consecutive triple of vars X,Y,Z on the path
 - $X \rightarrow Y \rightarrow Z$ and Y is unobserved $(Y \notin \mathbf{O})$
 - $X \leftarrow Y \leftarrow Z$ and Y is unobserved ($Y \notin O$)
 - $X \leftarrow Y \rightarrow Z$ and Y is unobserved $(Y \notin O)$
 - $X \rightarrow Y \leftarrow Z$ and Y or any of Y's descendants is observed
- Any variables X_i and X_j for which there is no active trail for observations O are called d-separated by O
 We write d-sep(X_i;X_i | O)
- Sets A and B are d-separated given O if d-sep(X,Y | O) for all X in A, Y in B. Write d-sep(A; B | O)