Introduction to Artificial Intelligence

Lecture 10 – Probability

CS/CNS/EE 154
Andreas Krause

Announcements

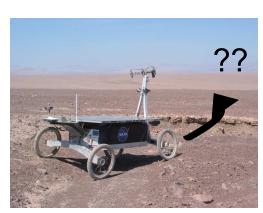
- Milestone due Nov 3. Please submit code to TAs
- Grading: PacMan
 - Compiles?
 - Correct? (Will clear maze within 5 minutes)
 - Reasonable performance?
 (Time to clear maze < 1.5*Time taken by baseline)
 - Beat baseline? (Eat more dots than baseline)
 - Top 4 teams
 - Winner

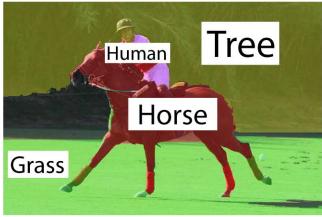
Announcements

- Grading: AvianAsker. Goal: Minimize #questions/guesses
 - Compiles?
 - Correct? (Will correctly identify bird within 300 questions)
 - Reasonable performance? (#Questions/guesses < 1.5 Baseline)
 - Beat baseline? (<= Questions than baseline)
 - Top 4 teams
 - Winner

Of course: No cheating (e.g., can't just submit baseline)

Probabilistic Al

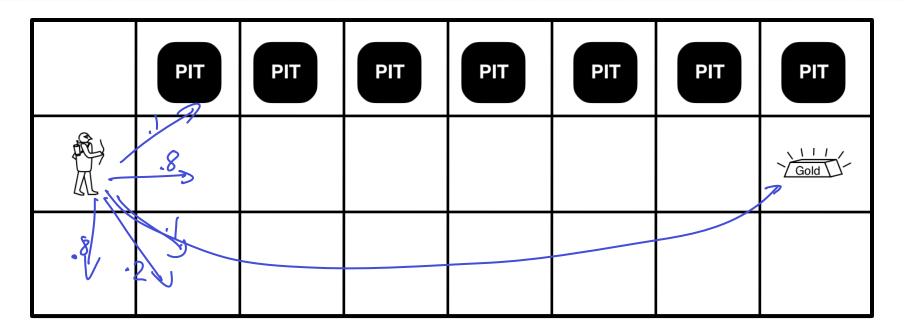




Quantifying Uncertainty

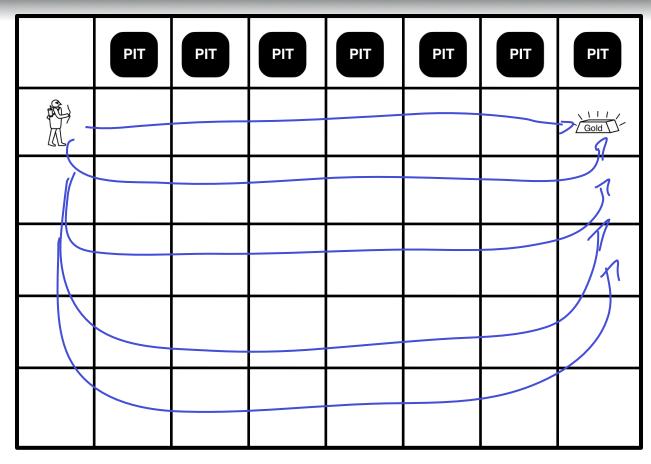
- So far, we have mainly focused on deterministic environments
- Often, actions can have uncertain outcomes
- Sensor observations are noisy
- One approach: Nondeterministic actions / observations
 - Not specified which outcome is more likely
 - Purely qualitative model of uncertainty

Problems with Nondeterminism



- Motion model: sometimes, actual direction is off by 45 degrees of intended direction
- Nondeterministic planning finds no feasible solution
- Suppose, error occurs with at most 20% chance..
 What should we do?

Decision making under uncertainty



Cost (Pit) = -1000 Cost (I step) = -1 Path I P(God) length 1 .01 7 2 .3 9 3 .9 11 .99 13

Which path should we choose?

Choose path that micrimises expeded cost

Review: Probability

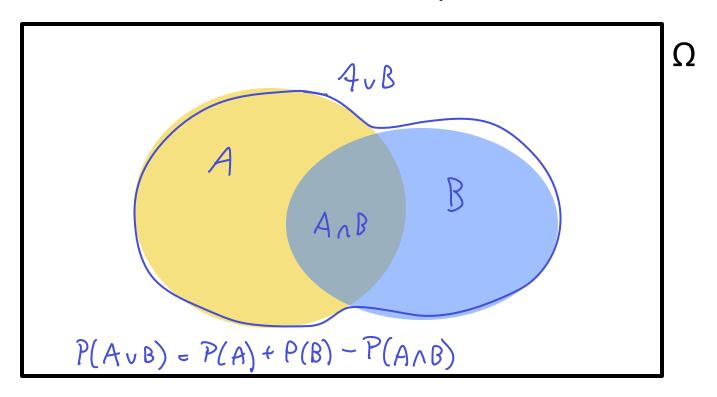
- Describe probability of events
 - P(Pit at [2,2])
 - P(Wumpus dead)
 - P(AvB)
- Formally: Probability Space (Ω, \mathcal{F}, P)
 - Set of "atomic events": Ω Ey. $\Omega = \{ 1, 2, \dots, 6 \}$
 - ullet Set of all non-atomic events: $\mathcal{F}\subseteq 2^\Omega$

 ${\mathcal F}$ is a σ -Algebra (closed under complements and countable unions)

• Probability measure $P:\mathcal{F} \to [0,1]$ For $\omega \in \mathcal{F}$, $P(\omega)$ is the probability that event ω happens $P(\xi \wr 3) = P(\xi \wr 3) = P(\xi$

Why use probabilities?

Related events must have related probabilities



Agents that bet according to beliefs that violate probability axioms can be forced to lose in expectation (de Finetti 1931)

Independent events

Two random events A, B are independent iff

$$P(A \cap B) = P(A) \cdot P(B)$$

Eg. $A = Dice 1$ comes up $\frac{3}{2}$ $P(A) = P(B) = \frac{1}{6}$
 $B = Dice 2$ "
$$P(Dxe 1 comes up 3, Dice 2 comes up 2) = P(A)P(B) = \frac{1}{36}$$

• Events A_1 , A_2 , ..., A_n are independent iff

Far all subsets
$$A_{i_1} \cdots A_{i_R}$$
 it holds that

 $P(A_{i_1} \cap \dots \cap A_{i_R}) = \prod_{j=1}^{r} P(A_{i_j})$

Interpretation of probabilities

- Philosophical debate..
- Frequentist interpretation
 - $P(\omega)$ is relative frequency of ω in repeated experiments
 - Often difficult to assess with limited data
- Bayesian interpretation
 - $P(\omega)$ is "degree of belief" that ω will occur
 - Where does this belief come from?
 - Many different flavors (subjective, objective, pragmatic, ...)
- For now assume probabilities are known

Random variables

- Events are cumbersome to work with.
- Let D be some set (e.g., the integers)
- ullet A random variable X is a mapping $X:\Omega o D$
- ullet For some $x \in D$, we say

$$P(X = x) = P(\{\omega \in \Omega : X(\omega) = x\})$$

"probability that variable X assumes state x"

$$P = \{1, \dots, 6\}$$
, Even(ω) = $\{1, 1, 1, 6\}$
 $P(\{1, 3, 5\})$
 $P(\{1, 2, 4, 6\})$

Examples

Bernoulli distribution: "(biased) coin flips"

$$D = \{H,T\}$$

Specify P(X = H) = p. Then P(X = T) = 1-p.

Note: can identify atomic events ω with {X=H}, {X=T}

- Binomial distribution counts the number of heads S $P(S = k) = \binom{n}{k} p^k (l-p)^{n-k}$
- Categorical distribution: "(biased) m-sided dice"D = {1,...,m}

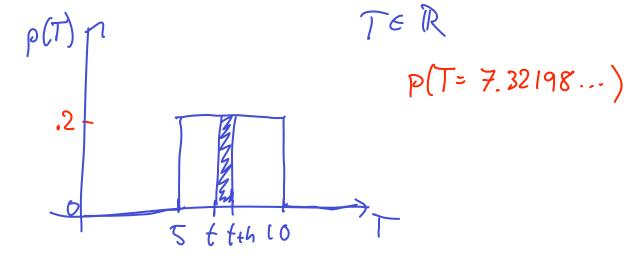
Specify
$$P(X = i) = p_i$$
, s.t. $\sum_i p_i = 1$

 Multinomial distribution counts the number of outcomes for each side

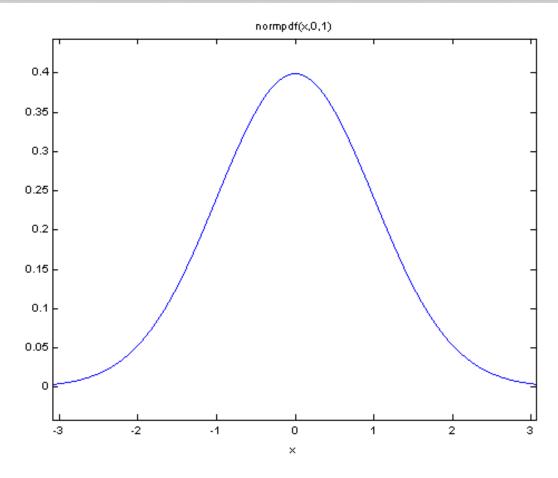
Continuous distributions

T = time it this to take an action

Probability density



Example: Gaussian distribution



$$\bullet$$
 σ = Standard deviation

$$\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

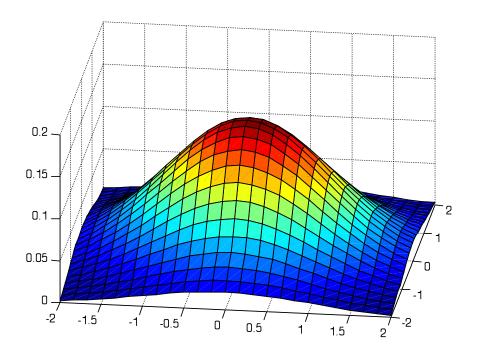
Joint distributions

- Instead of random variable, have random vector $\mathbf{X}(\omega) = [X_1(\omega), \dots, X_n(\omega)] \in \mathbf{D}^n$
- Can specify $P(X_1=x_1,...,X_n=x_n)$ directly (atomic events are assignments $x_1,...,x_n$)
- Joint distribution describes relationship among all variables
- Example: X_1, X_2 ideal dice $(X_3 = X_1 + X_2)$ $P(X_1 = (X_2 = 3, X_3 = 4) = \frac{1}{36}$ $P(X_1 = (X_2 = 3, X_3 = 5) = 0$ $Q = \{(1, 1, 2), (1, 2, 3), \dots, (6, 6, 12)\}$ $P(\omega) = \frac{1}{12}, = \frac{1}{36}$

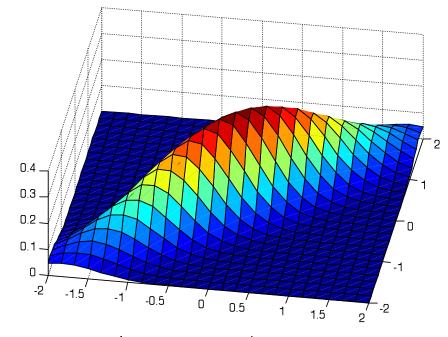
Example: Multivariate Gaussian

$$\frac{1}{2\pi\sqrt{|\Sigma|}}\exp\left(-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)\right) \qquad \Sigma = \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{21} & \sigma_2^2 \end{pmatrix} \quad \mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$$

$$\Sigma = \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{21} & \sigma_2^2 \end{pmatrix} \quad \mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$$



$$\Sigma = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$



$$\Sigma = \begin{pmatrix} 1 & 0.9 \\ 0.9 & 1 \end{pmatrix}$$

Probabilistic propositional logic

- Suppose we would like to express uncertainty about logical propositions
- Birds can typically fly $P(Bird \Rightarrow CanFly) = .95$
- Propositional symbols Bernoulli random variables
 - Specify P(Bird = b, CanFly = f)for all $b, f \in \{true, false\}$
 - ullet Events ω encode assignments to all propositional symbols

• Probability of a proposition ϕ is the probability mass of all models of ϕ (i.e., all ω that make ϕ true)

Marginal distributions

What is P(Toothache)?

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	016	.064	.144	.576

Joint distribution

$$P(X_{i},...,X_{n})$$

$$P(X_{i}) = \sum_{x_{i-1},x_{i-1},x_{i+1},...,x_{n}} P(x_{i},...,x_{n})$$

Conditional distributions

Conditional (or posterior) probabilities. E.g.,

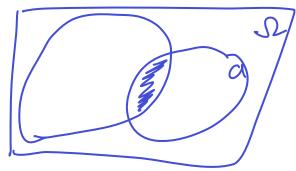
$$P(cavity \mid toothache) = .8$$

 $P(cavity \mid \neg toothache) = .1$

- Conditional distributions $P(Cavity \mid Toothache)$ specify values for all state combinations
- New evidence can change posterior belief

Conditional distributions

• Formal definition: $P(a \mid b) = \frac{P(a \land b)}{P(b)}$ if $P(b) \neq 0$



- Product rule $P(a \land b) = P(a \mid b)P(b)$
- For distributions: $P(A,B) = P(A \mid B)P(B)$ (set of equations, one for each instantiation of A,B)
- Chain rule: $P(X_1, X_n) = P(X_1) \cdot P(X_2 \mid X_1) \cdot P(X_3 \mid X_1 \mid X_2) \cdot \dots \cdot P(X_n \mid X_{n-1} \mid X_{n-1})$

Example: Conditional distributions

What is P(Toothache | cavity)?

$$P(t(c) = \frac{P(t \wedge c)}{P(c)} = \frac{.12}{.2}$$

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008

$$P(T(c)) = \frac{1}{2} P(T(c))$$
 where $2 = P(t(c) + P(t(c)))$
 $= \frac{1}{2} [.12,.08]$ $2 = .12 + .08 = .2$
 $P(T(c)) = [.6,.4]$ Sum of 2 numbers

Posterior inference

- Suppose we know:
 - Prior probability P(C)

cavity	$\neg cavity$
.1	.9

LikelihoodP(T | C)

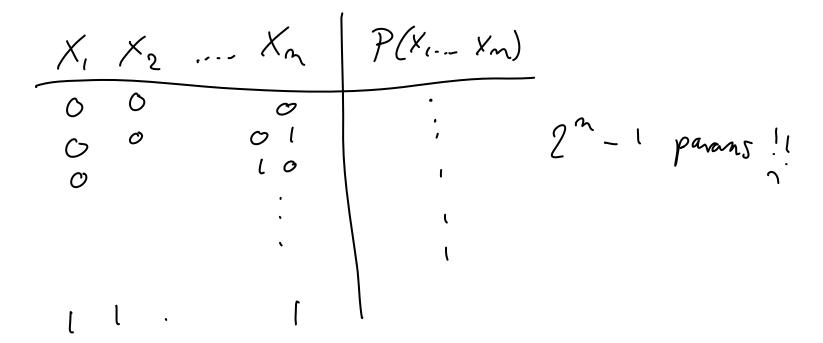
	toothache	$\neg toothache$
cavity	.9	.1
$\neg cavity$.01	.99

Bayes' rule

• How do we get $P(cavity \mid toothache)$

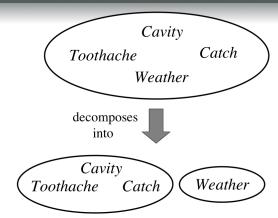
Problems with high-dim. distributions

- Suppose we have n propositional symbols
- How many parameters do we need to specify $P(X_1=x_1,...,X_n=x_n)$?



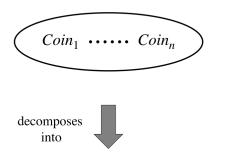
Independent RVs

• What if RVs are independent? RVs $X_1,...,X_n$ are independent, if for any assignment $P(X_1=x_1,...,X_n=x_n) = P(x_1) P(x_2) ... P(x_n)$



• How many parameters are needed in this case?

n, one for each var
$$P(X_i=1)=p_i!$$
 $n < 2^n-1!$



Key concept: Conditional independence

- ullet How many parameters? P(Toothache, Cavity, Catch)
- If I know there's a cavity, knowing toothache won't help predict whether the probe catches