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Announcements

¢ Milestone due Nov 3. Please submit code to TAs
¢ Grading: PacMan

o Compiles?
e Correct? (Will clear maze within 5 minutes)

¢ Reasonable performance?
(Time to clear maze < 1.5*Time taken by baseline)

¢ Beat baseline? (Eat more dots than baseline)
e Top 4 teams
¢ Winner



Announcements

o Grading: AvianAsker. Goal: Minimize #questions/guesses
e Compiles?
e Correct? (Will correctly identify bird within 300 questions)
e Reasonable performance? (#Questions/guesses < 1.5 Baseline)
¢ Beat baseline? (<= Questions than baseline)
e Top 4 teams
¢ Winner

o Of course: No cheating (e.g., can’t just submit baseline)
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Quantifying Uncertainty

¢ So far, we have mainly focused on deterministic
environments

» Often, actions can have uncertain outcomes

¢ Sensor observations are noisy

o One approach: Nondeterministic actions / observations
¢ Not specified which outcome is more likely
¢ Purely qualitative model of uncertainty



Problems with Nondeterminism
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¢ Motion model: sometimes, actual direction is off by

45 degrees of intended direction

¢ Nondeterministic planning finds no feasible solution

e Suppose, error occurs with at most 20% chance..

What should we do?




Decision making under uncertainty
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¢ Which path should we choose?
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Review: Probability

¢ Describe probability of events
o P(Pitat[2,2])
e P( Wumpus dead )

e P(AVvB)
» Formally: Probability Space (L2, F, P)
¢ Set of “atomic events”: Q2 E’)‘ ,Q:é SRS ‘6j

¢ Set of all non-atomic events: F C 9f2

F is a o-Algebra (closed under complements and countable unions)
even = TL.6 €3 , odd=¢ 13,53

¢ Probability measure P:F —[0,1]
For w € F, P(w) is the probability that event w happens
P[3R) = P(R23)=- B[ 3&}) = x, Plever) = =



Why use probabilities?

Related events must have related probabilities

4uB

P(AvB) < P(A)+ P(B) = P(AnG)

Agents that bet according to beliefs that violate
probability axioms can be forced to lose in expectation

(de Finetti 1931)




Independent events

¢ Two random events A, B are independent iff

P(A AR = P(8) P(8)

o =1
EV} A= Dice | comes @ 3 P(fﬂ P(BB g
R = Dice 2 o 2

D( D | oy wp 3o Drcelcams ap )= PAVPIE) = L-

o Events A, A,, ..., A, are independent iff

QF Ok[C S“@SQ*S Agl "';}4:‘& [“L [w[S '{1\47/
PLA; n oo A= T POA)
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Interpretation of probabilities
¢ Philosophical debate..

¢ Frequentist interpretation
¢ P(w) is relative frequency of w in repeated experiments
¢ Often difficult to assess with limited data

¢ Bayesian interpretation

¢ P(w) is “degree of belief” that w will occur
¢ Where does this belief come from?
o Many different flavors (subjective, objective, pragmatic, ...)

e For now assume probabilities are known
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Random variables

o Events are cumbersome to work with.

o Let D be some set (e.g., the integers)
¢ Arandom variable Xisa mapping X :Q — D

¢ Forsome z € D, we say
P X=2)=P{weQ: X(w) =1z})

“probability that variable X assumes state x”

ERA P S of el 63
/2 =2l ¢ Even(w) {o i€ e {1345)

P(EV% :(> z P( )’,24‘64633
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¢ Bernoulli distribution: “(biased) coin flips”
D ={H,T}
Specify P(X=H) =p. ThenP(X=T) = 1-p.
Note: can identify atomic events w with {X=H}, {X=T}
o Binomial distribution counts the number of heads S
p(S=k) = []2) o [1p)™
o Categorical distribution: “(biased) m-sided dice”
D={1,...,m}
Specify P(X=i)=p, s.t. ), p;=1
¢ Multinomial distribution counts the number of

outcomes for each side
13



Continuous distributions

o Probability density T =dtne L 4t b fob @ adin
p(T) 11 Te R

p(T= 7.3219€ ...
2T T
0 ﬂ

S 612% Lo |
o8 ~im P(Téfﬁzf*“]>/ﬁ

h->0
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Example: Gaussian distribution

2
o o =Standard deviation L exXp (_ (z — 1) )
V2mo?
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Joint distributions

¢ Instead of random variable, have randonz vector
X(w) =[X1(w),..., Xn(w)] € D
o Can specify P(X;=xy,...,X =X, ) directly
(atomic events are assignments xg,...,X.)

¢ Joint distribution describes relationship among all
variables ¢ siad

o Example: X X idocd Uice L Xy s Xt
P(¥-t0 % =3, Xy= ) = 5
D(es [ Ka=3 K> )= O
L= 3 ) (L) (6 6, 2)$
P(w)= 5 =%
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Probabilistic propositional logic

¢ Suppose we would like to express uncertainty about
logical propositions

o Birds can typically fly P(Bird = CanFly) = .95

» Propositional symbols =» Bernoulli random variables
o Specify P(Bird = b,CanFly = f)
forall p f e {true, false}

¢ Events w encode assignments to all propositional symbols

_,\fi 1bird PBid > (onfly) -

Canfly Pebird v Confly) = - Gt 3t.2°
ﬂCMf(y Ol = -4

¢ Probability of a proposition ¢ is the probability mass
of all models of ¢ (i.e., all w that make ¢ true)
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Marginal distributions

toothache =1 toothache

What is P(Toothache)?

catch| = catchl catch| — catch

> (00 4,000 £ .016 «.06¢ | cavity 108|012\ | .072| .008
~ cavity |\016| .064/ | .144 | .576

Joint distribution

PLKT,.o &)
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Conditional distributions

¢ Conditional (or posterior) probabilities. E.g.,
P(cavity | toothache) = .8

P(cavity | —toothache) = .1

» Conditional distributions  P(Cavity | Toothache)
specify values for all state combinations

¢ New evidence can change posterior belief

P(C& Vﬁc‘g [ +c>o‘{’ko\d(»c ((Lo\vﬂz 3 :{
P [(‘,(7\ wiy | tosthache, S“”"‘?\ :?[COLV#” \+06ﬂ\MLg>
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Conditional distributions

» Product rule P(aNb) = P(a | b)P(b)
o For distributions:  P(A,B) = P(A | B)P(B)
(set of equations, one for each instantiation of A,B)

@ Chain rule: P(X’""X"\S: P(’(\ P41 [K)- ?( 5l}< 5[)
(}( L Kie Ay l)
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Example: Conditional distributions

=1 toothache

toothache

What is —
P(Toothache | cavity)?
cavinJ.108 | .

P(ﬁ [(,) - PL'C’//\Q = __IQQ_- =1 cavity
\ Joint distribution

=1 catch catch| — catch

144| 576

P/f/o}-" P—L;%—Cz:'—%i S‘oumo?[ b npmbo CO‘J‘-IX‘IUM
PITle) = L P(T) Aee 2= Pl «P(atd

- -[2_— [ (2, O?J 2::\'[2;1—.0? =.2
P(Tle) =] .60 <] \
S-'WV»\.GF 2 ”"‘"‘LL"f
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Posterior inference

¢ Suppose we know:
e Prior probability P(C)

cavity | -cavity

1 9
e Likelihood toothache ﬂtOOthCI,ChG
P(T | C) cavity 9 1
—cavity 01 .99
Bagrs'

)b Fo

» How do we get P(cavity | toothache)
PlCle) = 3 PC. &) =4 P(tlC) Pl

= é [J”\u[l o« 9 ]
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Problems with high-dim. distributions

¢ Suppose we have n propositional symbols

¢ How many parameters do we need to specify

P(X,=x,,...,X,=x,)?

X Xy oo Kop | Plee ¥
fO & o / o
o ° ‘f; /= prery !
! N\

O

24



Independent RVs

o What if RVs are independent? Y
Weather
RVs X,,...,X, are independent,
if for any assignment l

P(X =X X =X,) = PlX) P(Xy) . P(X,) -
o How many parameters are

needed in this case?

a’\,( OW\&‘@"‘COLA Veys ‘P(}((‘:D:P;.,{
Yy, << ‘2“_ ;) decomposes l

» Independence too strong assumption... Is there
something weaker? [ Lp: mean « P(K, |Kp.. )= P(X)
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Key concept: Conditional independence

» How many parameters? P(Toothache,Cavity, Catch)

¢ If | know there’s a cavity, knowing toothache won’t
help predict whether the probe catches

P cabon | canty  Fooblaok) = P cot | canty )

——‘f._,—‘lwwﬂ-y _ PR ’LCOV;y
P((at | Ganty Toted) = PLh [ Gty

&M ch/ﬂsze v d Covm/ 7L[J\-\p.&ﬂ "'Jt/OW
C} ¢ ron Cmf,¥2/
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