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Logics in general

¢ Logics are formal languages for representing
information such that conclusions can be drawn

¢ Syntax defines the sentences in the language

¢ Semantics defines the “meaning” of sentences, i.e.,
the truth of a sentence in a world (environment state)

¢ Example: Language of arithmetic
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¢ Logicians think in terms of models
¢ Formally structured worlds w.r.t. which truth can be evaluated

o We say mis a model of a sentence a if a is true in m
ol = ()( +1 =€3 'S True i mo del M:E(X,B)j

o M(a) is the set of all models of a
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o Then KB = «ifandonlyif
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Wumpus models
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¢ KB = wumpus-world rules + observations



Wumpus models

¢ KB = wumpus-world rules + observations
o a,="[12]issafe", KBF o



Propositional logic: Syntax

¢ Simplest example of a logic; illustrates basic ideas

¢ Propositional symbols are sentences

o If Sis a sentence, =S is a sentence (negation)

» If S; and S, are sentences, S;AS, is a sentence (conjunction)
o If S; and S, are sentences, S, VS, is a sentence (disjunction)

» Notation shorthand:
oS, =S, for =S, V S, (implication)
oS, =S, for(S;=5,) A (S,=5,) (biconditional)




Propositional logic: Semantics

Each model specifies true or false for each proposition symbol

E.g. P, P,, Ps 1

Rules for evaluating truth with respect to a model m:

=S is true iff S is false
S; AS, is true iff S,istrue and S, istrue
S, vS, istrueiff S,istrue or S,istrue
chss evaluates an arbitrary sentence, e.g.,
=P, ,A (P, VP3,)
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Wumpus world in prop. logic

Let P, be true if there is a pitin [i, j].
Let B, ; be true if there is a breeze in [j, j].

- P1,1
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"Pits cause breezes in adjacent squares"

B, = (P1,2 v P2,1)
B,, = (P1,1 VP,V P3,1)



Proving entailment

¢ Two main classes of methods for proving KB E o

¢ Model checking
¢ Truth table enumeration (always exponential in n)

o Better: CSP (e.g, improved backtracking such as DPLL)
Check whether (KB A—a) is unsatisfiable

¢ Proof using inference

e Apply sequence of inference rules (syntactic manipulations)
¢ Can use inference rules in a standard search algorithm



Logical inference

¢ Inference: procedure i for deducing (proving)
sentences from knowledge base

o Wesay KB I; a if a can be inferred from KB using
inference procedure i

¢ Inferencei is called

o Sound  ifwhenever KB}, o thenalso KB F «
o Complete if whenever K B F « thenalso KB F; «

¢ Thus, a sound and complete inference procedure
correctly answers any question whose answer can be
inferred from KB
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Resolution

¢ Assumes sentences in Conjunctive Normal Form (CNF)

¢ This is no restriction (Tseitin transformation)
e Example ('P,l v o2 6(2> N (B(,g v Puv ?223 ...

o Resolution inference rule
b4V Nb, miV---Vm,
61 \/"'\/67;_1 \/€i+1 \/Ek\/ml \/mj_l \/mj+1---\/mn

¢ Sound and complete for

propositional logic!
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Resolution example

» KB=(B;, < (Py,vP,4) A= B, a=-P,
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Logical reasoning with resolution

¢ Resolution is complete
=» Any propositional sentence is entailed if and only it
can be proven by resolution

¢ BUT: Finding the proof can be difficult!
e Must search through possible applications of resolution rule
e Search space exponentially large

@ 3CNF SAT is NP complete!

¢ Existence of polynomial time algorithm considered unlikely

¢ Are there special kinds of sentences that are “easy” to

prove??
13



Horn clauses

¢ Special types of propositional formulae
¢ A Horn clause is

¢ A propositional symbol; or

¢ (conjunction of symbols) = symbol
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Forward and backward chaining

¢ Inference procedure for special types of KBs,
consisting only of Horn clauses

o Modus ponens complete for Horn formulas ©
1y, Qp, 1N Nap = 3

g

¢ Inference algorithms: forward and backward chaining
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Forward chaining

¢ ldea: fire any rule whose premises are satisfied in the KB,

¢ add its conclusion to the KB, until query is found

T
P = @
LANM = P P
BAL = M E\
AANP = L M
AANB = L
A
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Forward chaining example




Forward chaining example




Forward chaining example




Forward chaining example




Forward chaining example




Forward chaining example




Forward chaining example




Forward chaining example




Proof of completeness

FC derives every atomic sentence that is entailed by KB
1. FCreaches a fixed point: no new atomic sentences are derived
2. Consider final state as model m, assigning true/false to symbols
3. Every clause in the original KB is true in m

a,A ... A a,=Db

2. Hence mis a model of KB
If KB g, g is true in every model of KB, including m

e



Backward chaining

Idea: work backwards from the query Q:

check if Q is known already, or
prove by BC all premises of some rule concluding Q

Avoid loops: check if new subgoal is already on the goal stack

Avoid repeated work: check if new subgoal
1. has already been proved true, or
2. has already failed



Backward chaining example




Backward chaining example




Backward chaining example




Backward chaining example




Backward chaining example




Backward chaining example




Backward chaining example




Backward chaining example




Backward chaining example




Backward chaining example




Forward vs. backward chaining

¢ FCis data-driven, automatic, unconscious processing,
¢ e.g., simple model for object recognition, routine decisions

¢ May do lots of work that is irrelevant to the goal

¢ BCis goal-driven, appropriate for problem-solving,
¢ e.g., Where are my keys? How do | get into a PhD program?

o Complexity of BC can be much less than linear in size of KB



Summary so far:

¢ Logic = formal language with

¢ Syntax (what sentences are valid?)
¢ Semantics (what valid sentences are true?)

¢ Simple example: Propositional logic

¢ Can infer entailment of sentences using
e Model checking (e.g., Constraint satisfaction)
¢ Logical inference (should be sound and complete)

¢ Inference procedures

¢ Resolution: Sound and complete for arbitrary prop. formulas,
but exponential search space

e Forward-/Backward chaining: Sound; complete only for Horn
formulas. Inference in (sub-) linear time!
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Issues with propositional Wumpus world

Need “copies” of symbols and sentences for each cell

P, . is true if there is a pit in [1,1]
P,, is true if there is a pit in [1,2]

P, .istrue if there is a pitin [n,n]
B, , is true if there is a breeze in [1, 1]

B, is true if there is a breeze in [n, n]
B,,< (P,VvP,,);Bys <(Pyy VP,V P3); ...



First order logic (FOL)

¢ Propositional logic is about simple facts

e “There is a breeze at location [1,2]”

¢ First order logic is about facts involving
¢ Objects: Numbers, people, locations, time instants, ...
e Relations: Alive, IsNextTo, Before, ...
¢ Functions: MotherOf, BestFriend, SquareRoot, OneMoreThan,

¢ Will be able to say:

¢ IsBreeze(x); IsPit(x); IsNextTo(x,y)
Va,y: (IsPit(x) AN [sNextTo(x,y)) = IsBreeze(y)
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Simple example

¢ About King Richard the Lionheart and his evil brother John

¢ Objects:
¢ Richard
¢ John
¢ Crown

¢ Relations
¢ Richard and John are brothers
¢ Richard is a king

¢ Function

¢ Refer to specific properties of Richard and John, e.g., their head,
legs, ...
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FOL: Basic syntactic elements

¢ Constants: Kinglohn, 1, 2, ..., [1,1], [1,2], ...,[n,n], ...
o Variables: X, V, 2z ..

¢ Predicates: Brother,&5) =, ...

e Functions: LeftLegOf, MotherOf, Sqrt, ...

¢ Connectives: AV, -

¢ Quantifiers: Y,

¢ Constant, predicates and functions are mere symbols
(i.e., have no meaning on their own)
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FOL Syntax: Atomic sentences

A (variable-free) term is a

e constant symbol or

¢ k-ary function symbol: function(term ,term,, ..., term,)

Example: LeftLegOf(KingJohn), {sEreeseEis2l-
Rcd{«@-’i
Covec (Sw( . [Suee ['Q-GN\)W
An atomic sentence is a predicate symbol applied to terms

Example:
e Brother(KingJohn, RichardLionheart)
e IsNextTo([1,1],[1,2])

e > (Length(LeftLegOf(KingJohn)), Length(LeftLegOf
(RichardLionheart)))
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FOL Syntax: Composite sentences

o Composite sentences are

¢ Atomic sentences or
o Composite sentences joined by connectives

¢ Example:

BrotherO f(KingJohn, RichardLionheart) = BrotherO f(RichardLionheart, KingJohn)
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Models in FOL

¢ Much more complicated than in Propositional Logic

¢ Models contain
¢ Set of objects (finite or countable)
¢ Set of relations between objects (map obj’s to truth values)
¢ Set of functions (map objects to other objects)

and their interpretations:
¢ Mapping from constant symbols to model objects
e Mapping from predicate symbols to model relations
e Mapping from function symbols to model functions

» An atomic sentence predicate(term ,term,, ..., term,)
is true if the objects referred to by term ,term,, ...,

term, are in the relation referred to by predicate
45



Models in FOL: Example

person
erson

ing

left leg

left leg
N\

N\
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Models in FOL: Example

¢ Objects: R, J, C, LegR, LegJ, N
e Functions: LLO
o LLO(R)=LegR; LLO(J)=LegJ; LLO(C) = N; LLO(LegR) = N; ...
¢ Relations:
» B=RH); OH=((C ) B= 7(02) (IR
K={J}; P={R,J} @

on head

crown

person brother

o Mappings:
¢ Richard: R; John:J
o LeftLegOf: LLO;
¢ Brother: B; OnHead(OH)

E_erson
ing




Subtleties with FOL models

¢ Specifying known facts is tedious

¢ E.g., need
e = OnHead(R,J) on head
¢ = OnHead(LeftLegl,]) king ™
o —(R=J)
e — OnHead(LeftLegl, LeftLeg?2)
o —(R=LeftLegl)

‘ LN

left leg
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Indeterminate number of objects

¢ Let’s look at all possible models for a language with

e Two constants: R, J
¢ One binary relation: B

R J

HOHED-A
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“Database” semantics

¢ Typically conventions
¢ Closed-world: Atomic sentences not in KB are false
¢ Unique names: Different constants refer to different objects

¢ Domain closure: Only allow model objects that are
associated with constant symbols
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¢ Allow variables in addition to constants
Homework(x,154)

» Sentences with free variables: S(x)

¢ Quantifiers bind free variables

Vo : S(a:) is true if S(x) is true for all instantiations of x
(i.e., for each possible object in the model)

Jr - S(x) is true if S(x) is true for at least one
instantiation of x (i.e., for some object)

¢ Example:

¢ All homeworks in 154 are hard
W « :(HGNW@ (€, (5%) ~> Hc\ﬂ—u/(/c))

¢ At least one of the 154 homeworks is hard

3 K- How\e\,/w‘v(’(« 5¢) A Horf (/‘)
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Properties of quantifiers

ols Vo Vy S(x,y) thesameas Vy Vx S(z,y)?
ols dz dy S(z,y) thesameas Jy Jx S(z,y)?
ols dr Vy S(x,y) thesameas Vy dz S(z,y)?

Qx Vz Lom (&'3/) 77/\94-6 (s Spweone \to LGV‘@
@A &g anL
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De Morgan’s law for quantifiers

¢ Each quantifier can be expressed by the other (they
are dual to each other)

1Mk Sk = Fx %)
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