Introduction to Artificial Intelligence

Lecture 8 – Logical reasoning

CS/CNS/EE 154

Andreas Krause

Logics in general

- Logics are formal languages for representing information such that conclusions can be drawn
- Syntax defines the sentences in the language
- Semantics defines the "meaning" of sentences, i.e.,
 the truth of a sentence in a world (environment state)
- Example: Language of arithmetic

$$3 + 4 = =$$
 not vell-formed
 $3 + 4 = 6$ vell formed, but false
 $3 + x = 6$ true in world $\{(x,3)\}$
false in world $\{(x,2)\}$
true in vorld $\{(x,3),(y,2)\}$
 $3 = 3$ true in all worlds

Models

- Logicians think in terms of models
 - Formally structured worlds w.r.t. which truth can be evaluated
- We say m is a model of a sentence α if α is true in m

$$d = (x + 2 = 5)$$
 is true in model $m = \{(x,3)\}$

• $M(\alpha)$ is the set of all models of α

$$d = (x + 2 = y)$$
 $M(d) = \{ \{(x,0), (y,2)\}, \{(x,3), (y,5)\}, \}$

ullet Then $KB \models lpha$ if and only if

$$M(KB) \subseteq M(\alpha)$$

Wumpus models

KB = wumpus-world rules + observations

Wumpus models

- KB = wumpus-world rules + observations
- α_1 = "[1,2] is safe", $KB \models \alpha_1$

Propositional logic: Syntax

- Simplest example of a logic; illustrates basic ideas
- Propositional symbols are sentences
- If S is a sentence, ¬S is a sentence (negation)
- If S_1 and S_2 are sentences, $S_1 \wedge S_2$ is a sentence (conjunction)
- If S_1 and S_2 are sentences, $S_1 \lor S_2$ is a sentence (disjunction)
- Notation shorthand:
 - $S_1 \Rightarrow S_2$ for $\neg S_1 \lor S_2$ (implication)
 - $S_1 \Leftrightarrow S_2$ for $(S_1 \Rightarrow S_2) \land (S_2 \Rightarrow S_1)$ (biconditional)

Propositional logic: Semantics

Each model specifies true or false for each proposition symbol

E.g.
$$P_{1,2}$$
 $P_{2,2}$ $P_{3,1}$ false true false

Rules for evaluating truth with respect to a model *m*:

 $\neg S$ is true iff S is false $S_1 \wedge S_2$ is true iff S_1 is true and S_2 is true $S_1 \vee S_2$ is true iff S_1 is true or S_2 is true

Simple recursive process evaluates an arbitrary sentence, e.g.,

Wumpus world in prop. logic

Let P_{i,i} be true if there is a pit in [i, j].

Let B_{i,i} be true if there is a breeze in [i, j].

"Pits cause breezes in adjacent squares"

$$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$

$$B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$$

Proving entailment

• Two main classes of methods for proving $KB \models \alpha$

Model checking

- Truth table enumeration (always exponential in n)
- Better: CSP (e.g, improved backtracking such as DPLL) Check whether ($KB \land \neg \alpha$) is unsatisfiable
- Proof using inference
 - Apply sequence of inference rules (syntactic manipulations)
 - Can use inference rules in a standard search algorithm

Logical inference

- Inference: procedure i for deducing (proving) sentences from knowledge base
- We say $KB \vdash_i \alpha$ if α can be inferred from KB using inference procedure i
- Inference i is called
 - Sound if whenever $KB \vdash_i \alpha$ then also $KB \models \alpha$
 - Complete if whenever $KB \models \alpha$ then also $KB \vdash_i \alpha$
- Thus, a sound and complete inference procedure correctly answers any question whose answer can be inferred from KB

Resolution

- Assumes sentences in Conjunctive Normal Form (CNF)
 - This is no restriction (Tseitin transformation)
 - Example $(P_{i_1} \vee 7 \beta_{i_2}) \wedge (\beta_{i_1 2} \vee P_{i_1 V} P_{22}) \wedge \dots$
- Resolution inference rule

$$\frac{\ell_1 \vee \dots \vee \ell_k, \ m_1 \vee \dots \vee m_n}{\ell_1 \vee \dots \vee \ell_{i-1} \vee \ell_{i+1} \vee \ell_k \vee m_1 \vee m_{j-1} \vee m_{j+1} \dots \vee m_n}$$

- Sound and complete for propositional logic!
- Example:

Resolution example

•
$$KB = (B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})) \wedge \neg B_{1,1} \qquad \alpha = \neg P_{1,2}$$

Logical reasoning with resolution

- Resolution is complete
 - → Any propositional sentence is entailed if and only it can be proven by resolution
- BUT: Finding the proof can be difficult!
 - Must search through possible applications of resolution rule
 - Search space exponentially large
- 3CNF SAT is NP complete!
 - Existence of polynomial time algorithm considered unlikely
- Are there special kinds of sentences that are "easy" to prove??

Horn clauses

- Special types of propositional formulae
- A Horn clause is
 - A propositional symbol; or
 - (conjunction of symbols) ⇒ symbol

Forward and backward chaining

 Inference procedure for special types of KBs, consisting only of Horn clauses

Modus ponens complete for Horn formulas ©

$$\frac{\alpha_1, \dots, \alpha_k, \quad \alpha_1 \wedge \dots \wedge \alpha_k \Rightarrow \beta}{\beta}$$

Inference algorithms: forward and backward chaining

Forward chaining

- Idea: fire any rule whose premises are satisfied in the KB,
 - add its conclusion to the KB, until query is found

$$P \Rightarrow Q$$
 $L \land M \Rightarrow P$
 $B \land L \Rightarrow M$
 $A \land P \Rightarrow L$
 $A \land B \Rightarrow L$
 A

Proof of completeness

FC derives every atomic sentence that is entailed by KB

- FC reaches a fixed point: no new atomic sentences are derived
- 2. Consider final state as model m, assigning true/false to symbols
- 3. Every clause in the original KB is true in m

$$a_1 \wedge ... \wedge a_k \Rightarrow b$$

- 4. Hence *m* is a model of *KB*
- 5. If $KB \vdash q$, q is true in every model of KB, including m

Backward chaining

Idea: work backwards from the query Q:

check if Q is known already, or prove by BC all premises of some rule concluding Q

Avoid loops: check if new subgoal is already on the goal stack

Avoid repeated work: check if new subgoal

- 1. has already been proved true, or
- has already failed

Forward vs. backward chaining

- FC is data-driven, automatic, unconscious processing,
 - e.g., simple model for object recognition, routine decisions
- May do lots of work that is irrelevant to the goal
- BC is goal-driven, appropriate for problem-solving,
 - e.g., Where are my keys? How do I get into a PhD program?
- Complexity of BC can be much less than linear in size of KB

Summary so far:

- Logic = formal language with
 - Syntax (what sentences are valid?)
 - Semantics (what valid sentences are true?)
- Simple example: Propositional logic
- Can infer entailment of sentences using
 - Model checking (e.g., Constraint satisfaction)
 - Logical inference (should be sound and complete)
- Inference procedures
 - Resolution: Sound and complete for arbitrary prop. formulas, but exponential search space
 - Forward-/Backward chaining: Sound; complete only for Horn formulas. Inference in (sub-) linear time!

Issues with propositional Wumpus world

Need "copies" of symbols and sentences for each cell

 $B_{1.1} \Leftrightarrow (P_{1.2} \vee P_{2.1}); B_{2.1} \Leftrightarrow (P_{1.1} \vee P_{2.2} \vee P_{3.1}); ...$

```
P_{1,1} is true if there is a pit in [1,1] P_{1,2} is true if there is a pit in [1,2] ... P_{n,n} is true if there is a pit in [n,n] P_{1,1} is true if there is a breeze in [1, 1]
```

 $B_{n,n}$ is true if there is a breeze in [n, n]

First order logic (FOL)

- Propositional logic is about simple facts
 - "There is a breeze at location [1,2]"
- First order logic is about facts involving
 - Objects: Numbers, people, locations, time instants, ...
 - Relations: Alive, IsNextTo, Before, ...
 - Functions: MotherOf, BestFriend, SquareRoot, OneMoreThan,
 ...
- Will be able to say:
 - IsBreeze(x); IsPit(x); IsNextTo(x,y)

$$\forall x, y : (IsPit(x) \land IsNextTo(x, y)) \Rightarrow IsBreeze(y)$$

Simple example

- About King Richard the Lionheart and his evil brother John
- Objects:
 - Richard
 - John
 - Crown
- Relations
 - Richard and John are brothers
 - Richard is a king
- Function
 - Refer to specific properties of Richard and John, e.g., their head, legs, ...

FOL: Basic syntactic elements

Constants: KingJohn, 1, 2, ..., [1,1], [1,2], ..., [n,n], ...

Variables: x, y, z, ...

● Predicates: Brother, ≥ =, ...

Functions: LeftLegOf, MotherOf, Sqrt, ...

■ Connectives: ∧, ∨, ¬

• Quantifiers: \forall, \exists

 Constant, predicates and functions are mere symbols (i.e., have no meaning on their own)

FOL Syntax: Atomic sentences

A (variable-free) term is a

- constant symbol or
- k-ary function symbol: function(term₁, term₂, ..., term_k)

Example: LeftLegOf(KingJohn), IsBreeze([1,2])

An atomic sentence is a predicate symbol applied to terms

Example:

- Brother(KingJohn, RichardLionheart)
- IsNextTo([1,1],[1,2])
- > (Length(LeftLegOf(KingJohn)), Length(LeftLegOf (RichardLionheart)))

FOL Syntax: Composite sentences

- Composite sentences are
 - Atomic sentences or
 - Composite sentences joined by connectives

• Example:

 $BrotherOf(KingJohn, RichardLionheart) \Rightarrow BrotherOf(RichardLionheart, KingJohn)$

Models in FOL

- Much more complicated than in Propositional Logic
- Models contain
 - Set of objects (finite or countable)
 - Set of relations between objects (map obj's to truth values)
 - Set of functions (map objects to other objects)

and their interpretations:

- Mapping from constant symbols to model objects
- Mapping from predicate symbols to model relations
- Mapping from function symbols to model functions
- An atomic sentence predicate(term₁, term₂, ..., term_k) is true if the objects referred to by term₁, term₂, ..., term_k are in the relation referred to by predicate

Models in FOL: Example

Models in FOL: Example

- Objects: R, J, C, LegR, LegJ, N
- Functions: LLO
 - LLO(R)=LegR; LLO(J)=LegJ; LLO(C) = N; LLO(LegR) = N; ...
- Relations:
 - B={(C,J)}; $\mathcal{B} = \{(R,J), (J,R)\}$ $K=\{J\}; P=\{R,J\}$
- Mappings:
 - Richard: R; John: J
 - LeftLegOf: LLO;
 - Brother: B; OnHead(OH)

Subtleties with FOL models

- Specifying known facts is tedious
- E.g., need
 - ¬ OnHead(R,J)
 - ¬ OnHead(LeftLeg1,J)
 - ¬(R=J)
 - ¬ OnHead(LeftLeg1, LeftLeg2)
 - → ¬(R=LeftLeg1)
 - **...**

Indeterminate number of objects

- Let's look at all possible models for a language with
 - Two constants: R, J
 - One binary relation: B

"Database" semantics

- Typically conventions
 - Closed-world: Atomic sentences not in KB are false
 - Unique names: Different constants refer to different objects
 - Domain closure: Only allow model objects that are associated with constant symbols

Quantifiers

Allow variables in addition to constants

- Sentences with free variables: S(x)
- Quantifiers bind free variables

 $\forall x: S(x)$ is true if S(x) is true for all instantiations of x (i.e., for each possible object in the model)

 $\exists x: S(x)$ is true if S(x) is true for at least one instantiation of x (i.e., for some object)

- Example:
 - All homeworks in 154 are hard
 ∀x: (Homework (K, (54) >> Hand(K))
 - At least one of the 154 homeworks is hard

 At least one of the 154 homework (x, 154) 1 Hord (x)

Properties of quantifiers

- Is $\forall x \ \forall y \ S(x,y)$ the same as $\forall y \ \forall x \ S(x,y)$?
- Is $\exists x \ \exists y \ S(x,y)$ the same as $\exists y \ \exists x \ S(x,y)$?
- Is $\exists x \ \forall y \ S(x,y)$ the same as $\forall y \ \exists x \ S(x,y)$?

De Morgan's law for quantifiers

 Each quantifier can be expressed by the other (they are dual to each other)

$$\gamma \forall x \ S(x) = \exists x \ \gamma S(x)$$