Introduction to
Artificial Intelligence

Lecture 6 — CSPs (cont.)

CS/CNS/EE 154
Andreas Krause

Announcements

¢ Homework 1 is out. Due Friday Oct 22

¢ Room for recitation and office hours:
¢ Annenberg 107; Tuesday and Thursday 4:30-5:30pm

¢ Project assighments have been sent out
¢ Will post details on evaluation soon

¢ “Science of Iron Man” tonight 8pm (Beckman Auditorium)

Constraint satisfaction problems

o So far: “black box search”

¢ Environment state is arbitrary object

o CSPs:

o state is defined by variables X, taking values in domain D,
¢ goal test is a set of constraints

e step cost is 0 — just need to find goal
(or prove that constraints can’t be satisfied)

o Can develop general purpose algorithms for large
class of problems

Example: Map coloring

\JA‘ NT S A (@, /\/S\A/, v, T -

Dimaas - '.

fRBYS

Cm»%4‘m~'~zt§
WA + NTA WAL A . -

(unm)E (R o (2.8), (%B) . (VR

o Variables? Domains? Constraints?

Types of CSPs

o Discrete variables
i _» Finite domains /qu [o/dw\jr, Su clok"\(€ Quars Sar

Cl (agg

¢ Infinite domains « (XZ 2 le—g) /\ (yg 2)(3*9)

¢ Continuous variables

Robst /ﬁdla? condroh (fhre ML% PPN

Types of constraints

» Unary: involve single variable [.o.: WSw =3
¢ Binary: involve pairs of variables VSwv+ NT |
¢ Higher-order: involve 3 or more variables

o Soft constraints: violation incurs cost

¢ Constraint optimization instead of satisfaction

Solving CSP with search

¢ Naive approach

¢ State = Partial assignment to variables
e Successor fn = Assign feasible value to some unassigned var

e Goal test = check constraints
= =
R=1/134=6 =]

¢ Problems?

e o seaich. tral (! 0l

Backtracking search

¢ Variable assignments are commutative!
[//\/*5‘,‘/; \/ tlon NT;B] Some, agZLNT?B —Hon MW:)’/—)

¢ Only need to consider assignments to single variable

at each node Cioo czf M:OM“) 2 ol d”

¢ Depth-first search with single var. assignments is
called backtracking search

¢ Can solve 25-queens

Backtracking example

o

Backtracking example

Backtracking example

Backtracking example

Improving backtracking search

¢ General purpose methods can drastically improve speed

1. Which variable should be assigned next?

2. In what order should we try the values?

3. Can we detect inevitable failure early?

4. Can we take into account problem structure?

13

Constraint graph

¢ Nodes: variables
o Arcs: (binary) constraints

14

Most constrained variable

¢ Most constrained variable:

¢ choose the variable with the fewest legal values, a.k.a.
minimum remaining values (MRV) heuristic

g

w,

Most constraining variable

¢ Tie-breaker among most constrained variables

e Most constraining variable:

¢ choose the variable with the most constraints on remaining
variables

Least constraining value

¢ Given a variable, choose the least constraining value
(the one that rules out the fewest values in the

remaining variables)
1 % Allows 1 value for SA

‘1 % Allows 0 values for SA

e Combining these heuristics makes 1000 queens feasible

17

Improving backtracking search

General purpose methods can drastically improve speed

¢ Which variable should be assigned next?

=» Most constrained =» Most constraining
¢ In what order should we try the values?

=>» Least constraining
¢ Can we detect inevitable failure early?

¢ Can we take into account problem structure?

18

Forward checking

¢ |ldea:

¢ Keep track of remaining legal values for unassigned variables
¢ Terminate search when any variable has no legal values

O—2
=
®

4l

WA NT Q NSW v SA T
ENEENEENEENEENE|ENE|EYDE

19

Forward checking

¢ |ldea:

¢ Keep track of remaining legal values for unassigned variables

¢ Terminate search when any variable has no legal values

‘_L: _"‘\—L

@‘@"

WA NT Q NSW v SA T
ENEENEENEENEENE|ENE|EYDE
B "EEFEENEEYE| NEBEYE

o

5
g
G

20

Forward checking

¢ |ldea:

¢ Keep track of remaining legal values for unassigned variables
¢ Terminate search when any variable has no legal values

WA

NT

‘—L:; _"\—Lt_"_%

Q

NSW

Vv

SA

@‘Z"

o

5
g
G

21

Forward checking

¢ |ldea:

¢ Keep track of remaining legal values for unassigned variables
¢ Terminate search when any variable has no legal values

WA
Bl

22

Constraint propagation

¢ Forward checking propagates information from assigned to
unassigned variables, but doesn't provide early detection for

all failures:

\—Li-; _”‘\—Lr:_’“"}%

WA

NT

NSW

Vv

SA

N,

SENT SNSSRERANNET SEESD >
T Eoow s mEsm AL @

¢ NT and SA cannot both be blue!
¢ Can use constraint propagation to detect violations early

23

Arc consistency

¢ Simplest form of propagation makes each arc consistent
o X 2Yis consistent iff
for every value x of X there is some allowed y

‘—L:; _""H:_"_'}%

WA NT Q NSW Vv SA

(v
[EfATE EETE BN E @

~—"

24

Arc consistency

¢ Simplest form of propagation makes each arc consistent

e X Y is consistent iff
for every value x of X there is some allowed y

‘—L: _"\—Lt\«_"_l}?; ‘

O
I E[E e Xer EEEE @

N —

If X loses a value, neighbors of X need to be rechecked

25

Arc consistency

¢ Simplest form of propagation makes each arc consistent

o X 2Yis consistent iff
for every value x of X there is some allowed y

‘—L: _”“—Lb_’ ‘—Ly'%-

O
I E[e D' E[ETE @

If X loses a value, neighbors of X need to be rechecked

26

Arc consistency

¢ Simplest form of propagation makes each arc consistent

o X 2Yis consistent iff
for every value x of X there is some allowed y

‘—L: _"‘\—Lr;—_’ “"E—

N~
WA NT Q NSW \' SA T G
[E— E[e D') (T @

¢ If X loses a value, neighbors of X need to be rechecked
o Arc consistency detects failure earlier than forward checking
o Can be run as a preprocessor or after each assignment

Ody need 1o recheck ot = K whon ¥ Lw"‘m (/b\lcs‘
4 het ,;70"7[w\O@L cf /:n’ie,qro’daw\qc\ /}(J\Jf}.’“’g:\ 57

Arc consistency algorithm AC-3

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X, X», ..., X,}
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
(X;, X;)«— REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(X;, X;) then
for each X in NEIGHBORS[X;| do
add (X, Xi) to queue

function REMOVE-INCONSISTENT-VALUES(X;, X;) returns true iff succeeds
removed «— false
for each z in DOMAIN[X]]| do
if no value y in DOMAIN[X] allows (z,7) to satisfy the constraint X; < X
then delete = from DOMAIN[X}]|; removed«— true
return removed

. L Y Conr] i
Complechy = O &) Tt doma 5

28

Improving backtracking search

General purpose methods can drastically improve speed

¢ Which variable should be assigned next?
=» Most constrained =» Most constraining
¢ In what order should we try the values?
=>» Least constraining
¢ Can we detect inevitable failure early?
=» Forward checking, constraint propagation
¢ Can we take into account problem structure?

29

Problem structure

¢ Constraint graph

¢ Suppose we have g

n variables, @

grouped into indep.
Subproblems with at
most c variables 0

S:?,C Of SM ’hﬂ
moAC & g @

— *

30

Tree structured CSPs

Theorem: If CSP has tree structure, can solve it in time

O(n d?)

Will see this again for probabilistic reasoning! 31

Solving tree structured CSPs

¢ Choose root; orient edges away from root
¢ Pick topological ordering

e Forjfrom ndown to 1: remove all parent values for
which there is no consistent child value

¢ For jfrom 1 to n: assign values consistently with parent

¢ Special case of constraint propagation 5

Nearly tree-structured CSPs

33

Cutset conditioning

o Pick subset (“cutset”) of variables such that remaining
variables form a tree

¢ Search through each possible instantiation of cutset,
and try to solve remaining tree-structured CSP

(O""(’/“‘}% : gur()d}c Le évww fle C%f&ﬂl_ Of»/vtowé,

34

Junction trees (more later)

35

Improving backtracking search

General purpose methods can drastically improve speed

¢ Which variable should be assigned next?
=» Most constrained =» Most constraining
¢ In what order should we try the values?
=>» Least constraining
¢ Can we detect inevitable failure early?
=» Forward checking, constraint propagation
¢ Can we take into account problem structure?
=» Independent subproblems; trees; tree-like graphs

36

o CSPs are special search problem
¢ Environment state described using variables
¢ Goal test given by constraints

¢ Backtracking = DFS with fixed var. assigned per node

¢ Can be sped up using
¢ Variable and value selection heuristics
e Forward checking
¢ Constraint propagation / inference
¢ Exploit dependency structure among variables

37

