Introduction to
Artificial Intelligence

Lecture 5 — CSP

CS/CNS/EE 154
Andreas Krause

Announcements

¢ Sign up for projects
¢ Will make assignments tomorrow

¢ Homework 1 is out. Due Friday Oct 22

Games Vvs. search

¢ In games, actions are nondeterministic
¢ Opponent can affect state of the environment
¢ Optimal solution no longer sequence of actions,
instead a strategy (policy, conditional plan)
o IfyouX/l'lldo, elseifyoudoY/l'lldoZ, ...

Minimax game tree

¢ Search for optimal move no matter what opponent does
¢ minimax value = best achievable payoff against best play

MAX 3 /A

MIN

Co"l e/\l‘qj,kﬂff'(’/ \A.f'k?’ DES

¢ Key idea: For each node n in minimax tree keep track of
¢ a: Best value for MAX player if n is reached

¢ B: Best value for MIN player if n is reached

Player
o Never need to explore

consequences of actions

for which B<a Opponent 5]

¢ Avoid exploring “provably
suboptimal” parts -~
. . Player
of minimax tree

Opponent

Nondeterministic and partially observable search

¢ Nondeterminism

¢ Environment state not a function of current state and action

¢ Partial observability

¢ Percept is not a function of environment state

Ggent

o

Sensors —s

|

?

|

Actuators

Percepts

Actions

JUSWUOIIAUF

Nondeterminism

o So far, assumed that

¢ all actions are deterministic
¢ State is fully observable

¢ What if the actions are noisy?

¢ Example:

¢ If applied on dirty square:
“Suck” sometimes cleans up
neighboring square as well

¢ If applied on clean square:

A

°

080
%

o

0

&

SRS

0

0 [K] FE] FE

“Suck” sometimes dirties the square

¢ Solution?

AND-OR trees

Left Suck

GOAL

Suck

LOOP

Conditional plans

¢ For nondeterministic actions, optimal solution no
longer a sequence, but a conditional plan (strategy)

¢ Can represent in AND-OR tree (like minimax)
¢ OR nodes: Agent chooses action

o AND nodes: Environment chooses next state
¢ Need to specify what to do for every possible next state!

¢ Evaluate using backward induction (like minimax)
¢ Use IDS to grow tree until found solution (or tired)

Partial observability

e Suppose our robot is sensorless. =4 5

Soo So2 So2
R Z958) 2R

Can we still plan?

L FE| [E] FE

A LR ER

¢ Plan on “belief states” (sets of environment states),
instead of individual states

Working with belief states

11

Noisy actions (slippery vacuum world)

12

Planning in belief space

y R Y
=l | 3|=4 = | 2| |=d| 3l=A | =] 4| |=B
SR | SR S SR | 8R R | SR 2R 2R | B8R R
= o[= |t o =] s[=_ | o] =8> p -
-0 g| |=4
‘ S
4 SR IdQ o d@ LS
S S
7 | =4 8 =)

Y L Y Y R [
- — =4 |l—Lte[[=a] 4] 1
3R - S LS SR SR SR S _ 3R
=4 =4 > 8 =) =)
R

A A
L ! R

=0 L =0

— S > 8 =) P > 7 | =4 < —

=) h R =)

13

Planning in belief space

» Belief state = set of states agent could be in
¢ Belief state is a goal if all contained states are goals

@ Successor function keeps track of all states the agent
could be in after taking a particular action (“prediction”)

14

Sensing: Incorporating observations

L

[B,Dirty] 2

[B,Clean]

4] 55

Even with deterministic actions,
Percepts can be nondeterministic
=>» Need conditional plan

15

Sensing: Incorporating observations

[B,Clean] v

16

AND-OR trees with noisy observations

17

Summary: Partial observability

¢ Can reduce any partially observable problem to fully
observable problem on belief states

o Belief state = set of states the environment could be in

¢ Use existing algorithms on belief states
¢ Sensor-less case: Find opt. sequence using IDS, A*, etc.
¢ Observations: Develop conditional plans using AND-OR search
¢ Games: Use a-B pruning etc. on belief states

¢ # belief states exponential in # states...

¢ Need concise way to summarize the states we could be in

=» logic! (coming up soon) 8

19

Constraint satisfaction problems

o So far: “black box search”

¢ Environment state is arbitrary object

o CSPs:
o state is defined by variables X, taking values in domain D,
¢ goal test is a set of constraints

e step cost is 0 — just need to find goal
(or prove that constraints can’t be satisfied)

o Can develop general purpose algorithms for large
class of problems

20

Example: Map coloring
Vori obfes /7
WACNT SA, Q NSw, v, T

Northern %
Do'm.a.\; "".S : W % Terr1tory7 Queensland
estern
{ 'Rl Bt ys Australia %ASOutlll 3
ustralia
C m»84‘ oS
wh + NTA WAE4 A . .

(omtm)e (R} (R.8),(B). (VRY B.RY (0 1y]

¢ Variables? Domains? Constraints?

21

Sudoku

L
O
&
(G
x

"

o~ — 3.6) 5.4 o) N\
N[N |en| T — | OO
O [TFIN|— | NN |~ en
.1 W 6.2 <t 00.0/ on |~
AN[TFT|I TN | O | N[O || —
o)) Negll el Rl RVal Hunl INoN Na\ll I y
.3 t~ 1.00 @) 6.2 < |
R OINIIT|IAN|NT>|— |
<t | N ANV~ —]N|X0|\O
< o C.D L F.G T -
— o0 N
O Al @) AN N
WV | \O AN OO\ | en
e\ —
cNn|oof — SO | AN
N 1.00 6.2 e
@) ~ o0

< m O O W w o =T

(b)

(a)

22

-

%)

R4
tkﬂvw
JESN

9\5(@
=S8
- >
FE
RN
&S
v 23
;2
=3
D)
IE,
S A
.:UW
.MAm
~ -ve
,VA. w»w S
/.:iMa/L
A\o ¢
o ¢
2 5
g &
S &

Example: 8 queens

\/Mmb(es ‘ X(: POS.O'F
Dnem jn col. ¢

Bownangs 30, .- 03

Vos < Ki POS 40:5"““ :

23

Example: k-SAT

Disjanchen of 3 Leteranls
(v 5 v\
(X1 VX3 VX)AEXI VXLV XA A (X5 VX7V —Xa1)

\/a/g: X((- >(m [Dyww‘vxf.' f%mc, @JSQS (érf\iwﬁ)[f

¢ Fundamental special case
¢ All variables binary
¢ Constraints: disjunctions of k (negated) variables

¢ NP-complete for k>2
¢ Polynomial time solvable for k=2

24

Types of CSPs

o Discrete variables
i _» Finite domains /qu [o/dw\jr, Su clok"\(€ Quars Sar

Cl (agg

¢ Infinite domains « (XZ 2 le—g) /\ (yg 2)(3*9)

¢ Continuous variables

Robst /ﬁdla? condroh (fhe ML% PPN

25

Types of constraints

» Unary: involve single variable [.o.: WSw =3
¢ Binary: involve pairs of variables VSwv+ NT |
¢ Higher-order: involve 3 or more variables

o Soft constraints: violation incurs cost

¢ Constraint optimization instead of satisfaction

26

Example: higher-order constraints

e st

FOUk

: & /
2 Xl
O+0:R+10'X, J

AL (O R W TCF)

27

INtS

(O
. .
i
(Vp)
C
O
O
.
Q
S
. -
@
-
()
-
20
-

Example

~|—|enjOo|o|ln|T|N| N
NN~ | T —|\©O| 0
OC| 0TI —~ | N[~ en
— || O[T |0 |en| T
o\ I Rl Keoll Nel Ro)y Kool RVaY By
o)¥ Nool ool Bl HVaY Nunl NN N\l I g
N[—]0 N[O T |wn
ool RVl B gl Ha\l Neol Rl Roull @)
T I AN ANV || —]N|0[\O
< m O O W w o T -
— o0 @)
O <t| o\l K'a) N
Vol e} e\ o) o) Nep
o\ —
cNn|oo| — SO | AN
on — | o0 Nel Ko\ W
(@) c~ o0

< om O o wWw w ¢& T -—

(b)

(a)

28

Real-world examples of CSPs

¢ Assignment problems

¢ Timetabling
¢ Hardware configuration
¢ Transportation scheduling

¢ Multi-agent coordination

29

Solving CSP with search

¢ Naive approach

¢ State = Partial assignment to variables
e Successor fn = Assign feasible value to some unassigned var

e Goal test = check constraints
B/ D5 3,21

¢ Problems?

Sie o semich. tral (! 0l

30

Backtracking search

¢ Variable assignments are commutative!
[//\/*5‘,‘/; \/ tlon NT;B] Some, agZLNT?B —Hon MW:)’/—)

¢ Only need to consider assignments to single variable

at each node Ciop (4 M:OM“) 2 ol d”

¢ Depth-first search with single var. assignments is
called backtracking search

¢ Can solve 25-queens

31

Backtracking example

o

32

Backtracking example

Backtracking example

Backtracking example

Improving backtracking search

¢ General purpose methods can drastically improve speed

1. Which variable should be assigned next?

2. In what order should we try the values?

3. Can we detect inevitable failure early?

4. Can we take into account problem structure?

36

