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Announcements

¢ Sign up for projects
¢ Will make assignments tomorrow

¢ Homework 1 is out. Due Friday Oct 22



Games Vvs. search

¢ In games, actions are nondeterministic
¢ Opponent can affect state of the environment
¢ Optimal solution no longer sequence of actions,
instead a strategy (policy, conditional plan)
o IfyouX/l'lldo, elseifyoudoY/l'lldoZ, ...



Minimax game tree

¢ Search for optimal move no matter what opponent does
¢ minimax value = best achievable payoff against best play
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¢ Key idea: For each node n in minimax tree keep track of
¢ a: Best value for MAX player if n is reached

¢ B: Best value for MIN player if n is reached

Player
o Never need to explore

consequences of actions

for which B<a Opponent 5]

¢ Avoid exploring “provably
suboptimal” parts -~
. . Player
of minimax tree

Opponent



Nondeterministic and partially observable search

¢ Nondeterminism

¢ Environment state not a function of current state and action

¢ Partial observability

¢ Percept is not a function of environment state
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Nondeterminism

o So far, assumed that

¢ all actions are deterministic
¢ State is fully observable

¢ What if the actions are noisy?

¢ Example:

¢ If applied on dirty square:
“Suck” sometimes cleans up
neighboring square as well

¢ If applied on clean square:
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“Suck” sometimes dirties the square

¢ Solution?



AND-OR trees
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Conditional plans

¢ For nondeterministic actions, optimal solution no
longer a sequence, but a conditional plan (strategy)

¢ Can represent in AND-OR tree (like minimax)
¢ OR nodes: Agent chooses action

o AND nodes: Environment chooses next state
¢ Need to specify what to do for every possible next state!

¢ Evaluate using backward induction (like minimax)
¢ Use IDS to grow tree until found solution (or tired)



Partial observability

e Suppose our robot is sensorless. =4 5
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Can we still plan?
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¢ Plan on “belief states” (sets of environment states),
instead of individual states



Working with belief states
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Noisy actions (slippery vacuum world)
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Planning in belief space
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Planning in belief space

» Belief state = set of states agent could be in
¢ Belief state is a goal if all contained states are goals

@ Successor function keeps track of all states the agent
could be in after taking a particular action (“prediction”)
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Sensing: Incorporating observations
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Even with deterministic actions,
Percepts can be nondeterministic
=>» Need conditional plan
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Sensing: Incorporating observations

[B,Clean] v
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AND-OR trees with noisy observations

17



Summary: Partial observability

¢ Can reduce any partially observable problem to fully
observable problem on belief states

o Belief state = set of states the environment could be in

¢ Use existing algorithms on belief states
¢ Sensor-less case: Find opt. sequence using IDS, A*, etc.
¢ Observations: Develop conditional plans using AND-OR search
¢ Games: Use a-B pruning etc. on belief states

¢ # belief states exponential in # states...

¢ Need concise way to summarize the states we could be in

=» logic! (coming up soon) 8
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Constraint satisfaction problems

o So far: “black box search”

¢ Environment state is arbitrary object

o CSPs:
o state is defined by variables X, taking values in domain D,
¢ goal test is a set of constraints

e step cost is 0 — just need to find goal
(or prove that constraints can’t be satisfied)

o Can develop general purpose algorithms for large
class of problems
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Example: Map coloring
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¢ Variables? Domains? Constraints?
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Sudoku
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Example: 8 queens
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Example: k-SAT

Disjanchen of 3 Leteranls
(v 5 v\
(X1 VX3 VX)AEXI VXLV XA A (X5 VX7V —Xa1)

\/a/g: X( (- >(m [ Dyww‘vxf.' f%mc, @JSQS ( érf\iwﬁ)[f

¢ Fundamental special case
¢ All variables binary
¢ Constraints: disjunctions of k (negated) variables

¢ NP-complete for k>2
¢ Polynomial time solvable for k=2
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Types of CSPs

o Discrete variables
i _» Finite domains /qu [o/dw\jr, Su clok"\( € Quars Sar

Cl (agg

¢ Infinite domains « (XZ 2 le—g) /\ (yg 2 )(3*9)

¢ Continuous variables
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Types of constraints

» Unary: involve single variable [.o.: WSw =3
¢ Binary: involve pairs of variables VSwv+ NT |
¢ Higher-order: involve 3 or more variables

o Soft constraints: violation incurs cost

¢ Constraint optimization instead of satisfaction
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Example: higher-order constraints
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Real-world examples of CSPs

¢ Assignment problems

¢ Timetabling
¢ Hardware configuration
¢ Transportation scheduling

¢ Multi-agent coordination
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Solving CSP with search

¢ Naive approach

¢ State = Partial assignment to variables
e Successor fn = Assign feasible value to some unassigned var

e Goal test = check constraints
B/ D5 3,21

¢ Problems?

Sie o semich. tral (! 0l
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Backtracking search

¢ Variable assignments are commutative!
[//\/*5‘,‘/; \/ tlon NT;B] Some, agZLNT?B —Hon MW:)’/—)

¢ Only need to consider assignments to single variable

at each node Ciop (4 M:OM“) 2 ol d”

¢ Depth-first search with single var. assignments is
called backtracking search

¢ Can solve 25-queens
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Backtracking example

o
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Backtracking example




Backtracking example




Backtracking example




Improving backtracking search

¢ General purpose methods can drastically improve speed

1.  Which variable should be assigned next?

2. In what order should we try the values?

3. Can we detect inevitable failure early?

4. Can we take into account problem structure?
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