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Recitations and office hours

¢ Office hours TAs: Tuesday 4:30-5:30 in Annenberg 213
¢ Office hours Instructor: Wednesday 4-5 in Annenberg 300

¢ Recitations: Thursday 4:30-5:30 in Annenberg 107
¢ Optional but encouraged

o Will review material from class
¢ Discuss projects in more detail



Challenge projects

¢ Two projects
¢ “Crowdsourcing science”
¢ “Al in games”
¢ Details given in recitation on Thursday, and posted on
the website
¢ Implementation in Python

¢ Milestone after ¥4 weeks
¢ Simpler version of the challenge
¢ Feedback on implementation

¢ Final challenge

¢ Compare algorithms in a competition



Intelligent field guide

¢ “Crowdsourcing science”
¢ Recruit population to help map out rare bird species
¢ Existing field guides cumbersome to use

¢ Create “intelligent field guide” that lets
people identify bird species by “asking the right questions”
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Intelligent field guide

¢ Project goal

¢ Use Al techniques to adaptively ask questions to identify
bird species

o Data / Input

¢ Data set containing answers to questions about 200 birds

¢ Performance measure: accuracy; # questions used
¢ Milestone: Only correct answers

¢ Final challenge: “Noisy” answers; hold out test set; allowed
to use images..



PAC-MAN vs. PAC-MAN

¢ Game description
“Symmetric” version of PAC-MAN

¢ Who eats most “pac dots” wins
¢ Eating a “power pellet” turns PAC-MAN into a ghost
¢ Project goal
¢ Develop Al to win the eating competition
o Data / Input
¢ Description of maze (graph)

¢ Location of “pac dots” and “power pellets”

¢ Performance measure: # pac dots eaten
¢ Milestone: No power pellets; known maze
¢ Final challenge: power pellets; motion noise; new maze



Independent projects

o For students who do Al-related research

¢ Need to come up with your own project
¢ Must be “something new” for this class
e Groups of 2-3 students

¢ Will be advised by TAs and instructor

¢ Need to submit
¢ Project proposal
¢ Milestone report
¢ Final report

¢ Most students expected to choose one of the two
challenge projects



Project timeline

¢ By next Monday (Oct 11)

e Form teams of 3 students
¢ Indicate preference for projects

¢ Milestone implementation due: November 3
¢ Final implementation due: December 1



Search

¢ “Get from state A to B as quickly as possible”
¢ A fundamental problem in many Al problems
¢ Navigation, VLSI layout, resource allocation, planning, ...

¢ For now assume

¢ Fully observable environment and deterministic actions



Search with goal based agents
¢ Agent has

¢ model of environment (map, puzzle rules, mechanics,...)
How will the environment change if | do X?

¢ Goal checker:
Declares some environment states as goals

o Performance measure:

e Sum of action costs
¢ If all actions cost the same this is called unit cost model

¢ Agent function:
¢ Find cheapest sequence of actions to get to a goal state
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State spaces

¢ Vacuum robot: 8 states
¢ Rubik’s cube: 10719 states...
o Climbing stairs: oo states!

¢ Cannot represent search graph explicitly!

¢ Implicit representation:

e Successor functions maps states to set of (action,state) pairs

¢ Specifies which states can be reached immediately from any
given state
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Review: Tree search

function TREE-SEARCH( problem, fringe) returns a solution, or failure
fringe — INSERT(MAKE-NODE(INITIAL-STATE([problem]), fringe)
loop do
if fringe is empty then return failure
node — REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE(node)) then return node
fringe — INSERTALL(EXPAND(node, problem), fringe)
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Comparison of algorithms

Strategy BFS Uniform DFS @
cost deepening

Complete Yes* Yes* No Yes Yes

Time pd+1 bC/e bm bd bd/2

Space bd+1 bC/e bm bd bd/2

Optimal Yes* Yes No Yes* Yes*
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Informed vs. uninformed search

¢ Uninformed search

e Can only distinguish goals from non-goal states

¢ Informed search
¢ Have information about progress towards the optimal solution
¢ This lecture!
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Informed search

¢ Key idea:
Use information about how undesirable each node is

» Expand nodes in order of “undesirability”

¢ Implemented by using a priority queue for fringe

¢ Generalizes uninformed search

¢ BFS: Undesirability = depth of node
e DFS: Undesirability = - depth of node

¢ If “undesirability” chosen carefully, can get drastically
improved performance
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Example: Romania
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Greedy search

¢ Use estimate h(n) of distance to closest goal (heuristic)

¢ Greedy search sets undesirability of node as h(n)
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Greedy search

(a) The initial state

366
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Greedy search
(b) After expanding Arad Arad D

253 329 374
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Greedy search

(c) After expanding Sibiu
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Greedy search

(d) After expanding Fagaras Arad D
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Properties of Greedy search
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Example: Greedy is not complete
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Example: Greedy search is not optimal

Bucharest
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A*-search

¢ One of the most useful search algorithms!

¢ Key idea: Prune away expensive paths!

L’“Desirability of node n: f(n) = h(n) + g(n)
e g(n) = cost of node n
¢ h(n) = estimated cost to goal
¢ f(n) = estimated total cost of cheapest path through n to goal
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A*-search

(a) The initial state

366=0+366
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A*-search

(b) After expanding Arad

393=140+253 447=118+329 449=75+374
—

—_——

{ 7 b
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A*-search

(c) After expanding Sibiu

447=118+329 449=T75+374

646=280+366 415=239+176 671=291+380 413=220+193
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S
A*-search
(d) After expanding Rimnicu Vilcea Arad D
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A*-search

(e) After expanding Fagaras  Arad D
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A*-search
(f) After expanding Pitesti  Arad D
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Optimality of A*

¢ Bad choice of heuristic can break A*

¢ Can “block” (discourage expansion of) nodes that lead to
the optimal solution using large h(n)

¢ A heuristic function h(n) is called admissible if it never
overestimates the true cost:

h(n) < h*(n) for all n
N Cog"'l' G‘F ofJ-/, \oa:“« ﬁm n +O 900(

Theorem: For admissible heuristics, A* is optimal
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Proof: Optimality of A*
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Monotonic (consistent) heuristics

¢ A heuristic h(n) is called monotonic (consistent), if for

all nodes n, n” and actions a it holds
CI\
h(n) < c(n,a,n") + h(n') ( \@

¢ Monotonicity implies admissibility \,@/

¢ Example: Straight line distance is monotonic
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A* for monotonic heuristics

M*’ /4¥ «Q/(Iﬂmo/j

— o moqézr ./[h\ C{[Q
~ o Lody %/44) >[/@)
= Some vody, [ ‘ﬁ{(;)

¢ A* expands nodes along monotonically increasing f-values
¢ With monotonicity, even A*-graph search is optimal!
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Note on completeness of A*

¢ Technically, completeness of A* requires lower bound
on action cost

¢ Otherwise, there could be e=-many nodes with

f(n) < f(G)
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Complexity of A*

o Generally O(b%)

¢ Heuristic h(n) = 0 is admissible..

¢ Can be subexponential if heuristic is accurate:

h(n) —h™(n)| < O(log h™(n))

¢ Unfortunately, in practice this can be rarely guaranteed..

o But A* often still works extremely well! ©
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Properties of A* search

Completeness: ¢
? P \/55 N (,f/ (swar bond o acbip (O‘PO

o Time complexity: O([f/s ¢ Otten W\M btk

¢ Space complexity: 0/9%) /“""%/ fo WWA’”)

e

o Optimality: Yeg i admagble b
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Reducing memory usage

o For monotonic heuristics, can use variant of IDS: IDA*

¢ lteratively increase maximum f value
o Use “f-value bounded DFS”

¢ Trades polynomial increase in running time with up to
exponential reduction in space

» However, in practice
not as useful as IDS
for good heuristics




Example: admissible heuristics

L) - ¥ of mSpland i,
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Start State Goal State
2
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Dominance

» Suppose hy and ho are admissible and

ha(n) > hi(n)

¢ Then h2 dominates hl and is better for search
(expands fewer nodes)

» Given any two admissible heuristics h, and lp,

h(n) = max(hq(n), hp(n))
is admissible and dominates h, and hy
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Example: Benefit of A* search

» h{: number of
misplaced tiles

* ho: total Manhattan
distance

¢ 8-puzzle:

¢ IDS: 6,384 nodes

e A*(h1): 39 nodes
o A*(h2): 25 nodes

e 24-puzzle:

¢ IDS: ~54,000,000,000 nodes
e A*(h1): 39,135 nodes
o A*(h2): 1,641 nodes

3

7

Start State

Goal State
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Developing admissible heuristics
» Admissibility requires that h(n) < h”* (n)

¢ ldeally: Want to use h(n) = h* (n)
» But computing h™ (n) is as hard as the search problem

¢ Key idea: Get lower bound by relaxing some constraints

¢ E.g., in 8 puzzle: Relax constraint that tiles can’t be on
top of each other
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Example: TSP

¢ Traveling salesman problem: Find shortest tour
through graph visiting all nodes
e NP complete

O—0F9 lengleod © °
— \
O 0" o
MET
Rbar: Mow oshifny ookl gubmet
MST  con be cale, = O["»(L)
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What you need to know

¢ Informed search uses heuristics to choose nodes for
expansion

o Greedy search is suboptimal and incomplete
o A* search is optimal for admissible heuristics
o IDA* trades time for space complexity

¢ Can obtain admissible heuristics by relaxing the
search problem
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