Introduction to
Artificial Intelligence

Lecture 3 — Informed Search

CS/CNS/EE 154
Andreas Krause

Recitations and office hours

¢ Office hours TAs: Tuesday 4:30-5:30 in Annenberg 213
¢ Office hours Instructor: Wednesday 4-5 in Annenberg 300

¢ Recitations: Thursday 4:30-5:30 in Annenberg 107
¢ Optional but encouraged

o Will review material from class
¢ Discuss projects in more detail

Challenge projects

¢ Two projects
¢ “Crowdsourcing science”
¢ “Al in games”
¢ Details given in recitation on Thursday, and posted on
the website
¢ Implementation in Python

¢ Milestone after ¥4 weeks
¢ Simpler version of the challenge
¢ Feedback on implementation

¢ Final challenge

¢ Compare algorithms in a competition

Intelligent field guide

¢ “Crowdsourcing science”
¢ Recruit population to help map out rare bird species
¢ Existing field guides cumbersome to use

¢ Create “intelligent field guide” that lets
people identify bird species by “asking the right questions”

forehead_color black black black

breast_pattern solid solid solid

breast_color white white white

head_pattern plain capped plain

back_color white white black

wing_color grey/white grey white

leg_color orange | orange | orange

= | size medium large medium

bill_shape needle dagger dagger

- | wing_shape pointed | tapered long

Welinder

primary_color white white white et al 110

Intelligent field guide

¢ Project goal

¢ Use Al techniques to adaptively ask questions to identify
bird species

o Data / Input

¢ Data set containing answers to questions about 200 birds

¢ Performance measure: accuracy; # questions used
¢ Milestone: Only correct answers

¢ Final challenge: “Noisy” answers; hold out test set; allowed
to use images..

PAC-MAN vs. PAC-MAN

¢ Game description
“Symmetric” version of PAC-MAN

¢ Who eats most “pac dots” wins
¢ Eating a “power pellet” turns PAC-MAN into a ghost
¢ Project goal
¢ Develop Al to win the eating competition
o Data / Input
¢ Description of maze (graph)

¢ Location of “pac dots” and “power pellets”

¢ Performance measure: # pac dots eaten
¢ Milestone: No power pellets; known maze
¢ Final challenge: power pellets; motion noise; new maze

Independent projects

o For students who do Al-related research

¢ Need to come up with your own project
¢ Must be “something new” for this class
e Groups of 2-3 students

¢ Will be advised by TAs and instructor

¢ Need to submit
¢ Project proposal
¢ Milestone report
¢ Final report

¢ Most students expected to choose one of the two
challenge projects

Project timeline

¢ By next Monday (Oct 11)

e Form teams of 3 students
¢ Indicate preference for projects

¢ Milestone implementation due: November 3
¢ Final implementation due: December 1

Search

¢ “Get from state A to B as quickly as possible”
¢ A fundamental problem in many Al problems
¢ Navigation, VLSI layout, resource allocation, planning, ...

¢ For now assume

¢ Fully observable environment and deterministic actions

Search with goal based agents
¢ Agent has

¢ model of environment (map, puzzle rules, mechanics,...)
How will the environment change if | do X?

¢ Goal checker:
Declares some environment states as goals

o Performance measure:

e Sum of action costs
¢ If all actions cost the same this is called unit cost model

¢ Agent function:
¢ Find cheapest sequence of actions to get to a goal state

10

State spaces

¢ Vacuum robot: 8 states
¢ Rubik’s cube: 10719 states...
o Climbing stairs: oo states!

¢ Cannot represent search graph explicitly!

¢ Implicit representation:

e Successor functions maps states to set of (action,state) pairs

¢ Specifies which states can be reached immediately from any
given state

11

Review: Tree search

function TREE-SEARCH(problem, fringe) returns a solution, or failure
fringe — INSERT(MAKE-NODE(INITIAL-STATE([problem]), fringe)
loop do
if fringe is empty then return failure
node — REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE(node)) then return node
fringe — INSERTALL(EXPAND(node, problem), fringe)

12

Comparison of algorithms

Strategy BFS Uniform DFS @
cost deepening

Complete Yes* Yes* No Yes Yes

Time pd+1 bC/e bm bd bd/2

Space bd+1 bC/e bm bd bd/2

Optimal Yes* Yes No Yes* Yes*

13

Informed vs. uninformed search

¢ Uninformed search

e Can only distinguish goals from non-goal states

¢ Informed search
¢ Have information about progress towards the optimal solution
¢ This lecture!

14

Informed search

¢ Key idea:
Use information about how undesirable each node is

» Expand nodes in order of “undesirability”

¢ Implemented by using a priority queue for fringe

¢ Generalizes uninformed search

¢ BFS: Undesirability = depth of node
e DFS: Undesirability = - depth of node

¢ If “undesirability” chosen carefully, can get drastically
improved performance

15

Example: Romania

[] Oradea Straight-line distance
Nemt to Bucharest

87 Arad 366

[1asi Bucharest 0

Arad 0 Craiova 160
Sibiu 0 Fagaras Dobreta 242

118 % 1 Vaslui EfOI‘ie]_6]_
— Fagaras 178

Timisoara Rimnicu Vilcea Giﬁr giu 77

111 7 Lugoj Pitesti \21! 142 }—Ih:sova 151

O asl 226

70 . g5 [28 L] Hirsova Lllng 244

[] Mehadia 101 - Urziceni Mehadia ?41

Do t75 12 138 Bucharest % Neamt 534

opreta

- 90 = Oradea 380

Craiova | Giurgiu Eforte PiteSti 98

Rimnicu Vilcea 193

Sibiu 253

Timisoara 329

Undesirability? Sggfl‘;‘“ -
Zerind 374

16

Greedy search

¢ Use estimate h(n) of distance to closest goal (heuristic)

¢ Greedy search sets undesirability of node as h(n)

17

Greedy search

(a) The initial state

366

18

Greedy search
(b) After expanding Arad Arad D

253 329 374

19

Greedy search

(c) After expanding Sibiu

20

Greedy search

(d) After expanding Fagaras Arad D

CSibiu > Climisoarad CZerind S

329 374

G > G o> Gt
366 380 193

CSibiu D PCBucharesd
253 0

21

Properties of Greedy search

o Complete? No Com have 160f§ /Lw"[cGn ﬁx
bg rc,/wwé%y)
. . M N .
¢ Time complexity? O[b) f finifel mony
Chkes

¢ Space complexity? O(bm) heed s Conennher

» Optimal? Mo

22

Example: Greedy is not complete
- - W

— Nemt <.
D @
)

. 92
Sibiu Fagaras

118 L Vaslui
80

Rimnicu Vilcea

Arad

Timisoara ™
142
o 211
111 1 Lugoj Pitesti
[
70 98
. 85 Hirsova
[] Mehadia 101 Urziceni
- 86
75 138 Bucharest
Dobreta [120
0 90
Craiova] Giurgiu Eforie

23

Example: Greedy search is not optimal

Bucharest

Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

366

160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
80
199
374

24

A*-search

¢ One of the most useful search algorithms!

¢ Key idea: Prune away expensive paths!

L’“Desirability of node n: f(n) = h(n) + g(n)
e g(n) = cost of node n
¢ h(n) = estimated cost to goal
¢ f(n) = estimated total cost of cheapest path through n to goal

C/%\
fry @\) ,'/@
@u

25

A*-search

(a) The initial state

366=0+366

26

A*-search

(b) After expanding Arad

393=140+253 447=118+329 449=75+374
—

—_——

{ 7 b

27

A*-search

(c) After expanding Sibiu

447=118+329 449=T75+374

646=280+366 415=239+176 671=291+380 413=220+193

28

S
A*-search
(d) After expanding Rimnicu Vilcea Arad D

CSibiu > Cimisoarg) Cerind 5

447=118+329 449=T75+374

646=280+366 415=239+176 671=291+380

CCraiovad CPitesti D C Sibiu 3

526=366+160 417=317+100 553=300+253

29

A*-search

(e) After expanding Fagaras Arad D
CSibiu_> Cimisoar CZerind
447=118+329 449=75+374

CArad > (Fagaras> COradeay @amicu Vilisd

646=280+366 671=291+380
CSibiu > QucharesDd CCraiovad PCPitesti D C Sibiu_3
591=3384253 450=45040 526=366+160 417=317+100 553=300+253

30

A*-search
(f) After expanding Pitesti Arad D

CSibiu > Cimisoara)

447=118+329

Carad D Fagaras> COradea imicu Viled

646=280+366 671=291+380
CSibiu > Qucharesd CCraiovad CRitesti > C Sibiu 3
591=338+253 450=450+0 526=366+160 553=300+253

>QBuchares) CCraiova) imnicu Vilee)

418=418+0 615=455+160 607=414+193

—

CZerind 2

449=75+374

31

Optimality of A*

¢ Bad choice of heuristic can break A*

¢ Can “block” (discourage expansion of) nodes that lead to
the optimal solution using large h(n)

¢ A heuristic function h(n) is called admissible if it never
overestimates the true cost:

h(n) < h*(n) for all n
N Cog"'l' G‘F ofJ-/, \oa:“« ﬁm n +O 900(

Theorem: For admissible heuristics, A* is optimal

32

Proof: Optimality of A*

Start

3 (60 < 96, e

\4/4() A@(ﬂ\ < :((6‘<L> n’ﬁ
() + (=) = 96,
/[6—';> -"9[%“&__@_ ¢C@® > ?{rﬂ + L,/m) -Z[M) G,
=G ol Sibept
>9(c.)
76

Co /})‘ bag o Apod all nodes m om Shoted /owHL
+o Gy |D(‘(:O°¢ %mi>§/ Gq

33

Monotonic (consistent) heuristics

¢ A heuristic h(n) is called monotonic (consistent), if for

all nodes n, n” and actions a it holds
CI\
h(n) < c(n,a,n") + h(n') (\@

¢ Monotonicity implies admissibility \,@/

¢ Example: Straight line distance is monotonic

34

A* for monotonic heuristics

M*’ /4¥ «Q/(Iﬂmo/j

— o moqézr ./[h\ C{[Q
~ o Lody %/44) >[/@)
= Some vody, [‘ﬁ{(;)

¢ A* expands nodes along monotonically increasing f-values
¢ With monotonicity, even A*-graph search is optimal!

35

Note on completeness of A*

¢ Technically, completeness of A* requires lower bound
on action cost

¢ Otherwise, there could be e=-many nodes with

f(n) < f(G)

36

Complexity of A*

o Generally O(b%)

¢ Heuristic h(n) = 0 is admissible..

¢ Can be subexponential if heuristic is accurate:

h(n) —h™(n)| < O(log h™(n))

¢ Unfortunately, in practice this can be rarely guaranteed..

o But A* often still works extremely well! ©

37

Properties of A* search

Completeness: ¢
? P \/55 N (,f/ (swar bond o acbip (O‘PO

o Time complexity: O([f/s ¢ Otten W\M btk

¢ Space complexity: 0/9%) /“""%/ fo WWA’”)

e

o Optimality: Yeg i admagble b

38

Reducing memory usage

o For monotonic heuristics, can use variant of IDS: IDA*

¢ lteratively increase maximum f value
o Use “f-value bounded DFS”

¢ Trades polynomial increase in running time with up to
exponential reduction in space

» However, in practice
not as useful as IDS
for good heuristics

Example: admissible heuristics

L) - ¥ of mSpland i,

Ny = Soma of Monhoklen
dslamcey, to Goal

2 4 1 2
6 3 4 5
3 1 6 7 8
Start State Goal State
2

40

Dominance

» Suppose hy and ho are admissible and

ha(n) > hi(n)

¢ Then h2 dominates hl and is better for search
(expands fewer nodes)

» Given any two admissible heuristics h, and lp,

h(n) = max(hq(n), hp(n))
is admissible and dominates h, and hy

41

Example: Benefit of A* search

» h{: number of
misplaced tiles

* ho: total Manhattan
distance

¢ 8-puzzle:

¢ IDS: 6,384 nodes

e A*(h1): 39 nodes
o A*(h2): 25 nodes

e 24-puzzle:

¢ IDS: ~54,000,000,000 nodes
e A*(h1): 39,135 nodes
o A*(h2): 1,641 nodes

3

7

Start State

Goal State

42

Developing admissible heuristics
» Admissibility requires that h(n) < h”* (n)

¢ ldeally: Want to use h(n) = h* (n)
» But computing h™ (n) is as hard as the search problem

¢ Key idea: Get lower bound by relaxing some constraints

¢ E.g., in 8 puzzle: Relax constraint that tiles can’t be on
top of each other

43

Example: TSP

¢ Traveling salesman problem: Find shortest tour
through graph visiting all nodes
e NP complete

O—0F9 lengleod © °
— \
O 0" o
MET
Rbar: Mow oshifny ookl gubmet
MST con be cale, = O["»(L)

44

What you need to know

¢ Informed search uses heuristics to choose nodes for
expansion

o Greedy search is suboptimal and incomplete
o A* search is optimal for admissible heuristics
o IDA* trades time for space complexity

¢ Can obtain admissible heuristics by relaxing the
search problem

45

