TRACE: Eye-Tracking Keyboard Application

Sadaf Amouzegar *
California Institute of Technology
samouzeg@caltech.edu

ABSTRACT

The ability to track human eye gaze is not at all a new
invention. Different eye-tracking devices have been available
for nearly a decade. This technology has been used not only
for research in the fields of psychology and marketing but
also to improve existing technology for disabled individuals.
In recent years, new portable and affordable eye-tracking
technology has become available and has made it possible
for users to plug into their own machines. In turn, this
has allowed developers to start building creative eye-tracking
applications for computers and tablets.

In this paper, I present TRACE, a virtual keyboard ap-
plication that uses eye input for writing textual messages.
TRACE uses the Eye Tribe tracker to detect where on the
keyboard interface the user is looking at, and routes the key-
board input associated with that location to the application,
which then displays the “typed” message on the screen.

While the motivation and research for this work has been
focused on disabled users, TRACE makes gaze-based typing
effective and simple enough for able-bodied users to use for
everyday writing tasks. Since the Eye Tribe is the smallest
and most affordable eye-tracking module in the world, it is
possible for such gaze-based technique implemented in this
program to be used as a viable alternative for users who
choose not to use a keyboard depending on their abilities,
tasks, and preferences.

Categories and Subject Descriptors

H.5.2 [User interfaces]: Input devices and strategies; 1.2.7
[Natural Language Processing]: Speech recognition and
synthesis; K.8.1 [Personal Computing]: Application Pack-
ages; 1.5.5 [Pattern Recognition]: Implementation; D.2.m
[Software Engineering]: Miscellaneous; 1.2.6 [Artificial
Intelligence|: Learning

Keywords

Eye Tracking, Input Devices, Gaze-enhanced User Interface,
Virtual Keyboard, Auto-completion, Speech Recognition,
Machine Learning, Neural Network, Hidden Markov Model

1. MOTIVATION

Approximately 5,600 people in the United States are diag-
nosed with ALS (amyotrophic lateral sclerosis) every year.
ALS is a progressive neurodegenerative disease that debil-
itates the nerve cells in the brain and the spinal cord. It
impacts the motor neurons that run from the brain to the
spinal cord, and from the spinal cord to the muscles in the
body. When an individual’s motor neurons are damaged or
destroyed, he/she loses control of the muscles entirely and
may become paralyzed. ALS gradually robs individuals of
their physical abilities including the ability to speak. In
recent year, eye-tracking technology has helped those with
ALS communicate with others. One way people with ALS
are living better lives is through such assistive technology.
Eye-tracking technology such as the Tobii devices or Eye-
gaze Edge help narrow the gap between those who have
lost the ability to communicate and the world around them.
Even when patients with ALS or with other diseases that
impact movement, are unable to speak, they can “communi-
cate” with the outside world using their eye movements. By
tracking their eye gaze, some programs using eye-tracking
technology can generate speech on a screen or select com-
pleted phrases from the screen for communication.

The Eye Tribe is another recently developed eye tracking
technology sold specifically to software developers in order
for them to incorporate the device into their applications
and programs. The device has broken the record for the
smallest eye-tracking device in the world. It does not require
an external power source and is extremely portable as it
also runs with most computers and tablets. The tracker
uses a camera and high-resolution infrared LED in order
to track the user’s eye movement. The camera captures
images of the user’s pupils and runs them through computer-
vision algorithms that determine the user’s on-screen gaze
coordinates, the location on the screen where the user is
looking.

Taking into account my skills as a computer scientist and
my desire to help patients with ALS, I sought to implement
an eye-tracking keyboard software using the Eye Tribe hard-

9The student is currently pursuing a B.S. degree in com-
puter science at the California Institute of Technology. The
project was overseen by Professor Kenneth Pickar.



ware module.

2. RESEARCH AND GOALS

The first step prior to the implementation phase was to con-
duct careful research and interview the important parties in
order to determine the needs of the potential users and the
fundamental goals the product should achieve. I contacted
the Eye Tribe team to find out more about the capabilities
and limitations of the hardware module. The module can
only be purchased from their online store and is not offered
at any other location. The device registers any eye move-
ment as small as the size of a fingertip. The module has not
been tested with patients and therefore, there is a probabil-
ity of having unforeseen issues. However, the tracker should
ideally work for anyone with normal eyes. Certain medical
conditions such as strabismus, exotropia, or esotropia may
limit the capability of the module. Also there have been
known performance issues with bifocals, special lenses, or
polarized glasses. I interviewed with the Care Service de-
partment of the ALS Associations to find out more about
ALS and what the needs of the patients would be with re-
spect to using a keyboard. They informed me that most
patients use the Tobii devices and complain about the set-
tings they must deal with in order to configure the device.
It is difficult for a lot of patients to customize the controls.
Of course, the cost of the Tobii devices (priced at thousands
of dollars) has been a major concern as well. I interviewed
two employees at the Rancho Los Amigos National Rehabil-
itation Center to discuss in detail what the needs and expec-
tations are, who the product should serve, and what basic
functionalities should be implemented by the end of the 10-
week period. It was decided the minimum viable product
should be a communication application with an on-screen
keyboard which allows a person to type out a message using
only their eyes. The primary focus should be on keeping
the cost of the product as low as possible rather than im-
proving upon the features of existing similar products out
there. Once that is achieved, additional advanced features
such as auto-completion, speech recognition, media sharing,
and customized settings may be implemented.

Thus, according to online research and in-person interviews,
the following conclusions were made:

e Most ALS patients have difficulty using a standard
keyboard and require electronic communication aids
such as an on-screen eye-tracking keyboard software.

e The cost of existing eye tracking technology is very
high

e Similar technology does not support the Mac operating
system or smart phones.

e Other eye trackers in the market are bulky (software
bundled with hardware) and can become outdated very
fast.

Thus, the primary focus of my project was to design a
product for ALS patients in order to type a message on a
computer by tracking eye movements. I aimed to create a
portable, OS-independent software program that can be eas-
ily modified to work on a smart phone architecture. While

developing the product, I made the assumptions that the
Eye Tribe tracking module functions well and is not merely
a prototype. My program relies on the API provided by
the Eye Tribe team. The API is code written to communi-
cate directly with the device. If this code were to change,
my program would be rendered useless. However, I imple-
mented my program such that if the “logic” of the Eye Tribe
API were to be modified, my software product would con-
tinue to function or could be changed to adapt very easily. In
order to enhance the application as well as user experience,
the following components were integrated into the program:

e Auto-completion: It takes patients a long time to type
out each word entirely. Regardless of how advanced
the technology is, there is a very fine line between
a simple glance at a key versus what is meant to be
taken as an input if we reduce this “registration” time.
Therefore, a real-time auto-completion component in-
tegrated into the keyboard would be very helpful. Of
course, the program would learn from the user’s pre-
vious history and improve on future auto-completion
recommendations.

e Adjustable interface: Different users have different skills
and needs. Certain adjustments that the keyboard
would ideally allow the user to make should include
but are not limited to:

— Changing the size of the keys

— Changing the layout of the keyboard (ANSI, al-
phabetically ordered, etc.) For some people with
learning, memory, or intellectual disabilities as
well as individuals who are simply not familiar
with the more common computer keyboard lay-
out, an arrangement where the keys are in alpha-
betical order makes it easier to find the right key.

— Customizable recognition algorithm to allow the
user to adjust the “time” it takes to distinguish a
gaze as an input. Some users may need to look at
a key for only a second or two in order to select
the key while others may need to gaze at keys for
longer periods of time without intending to select
them.

e Sharing on Social Networking sites: The users will be
able to login with Facebook account information and
post the “eye-written” messages to their profiles di-
rectly. This feature allows the user to make textual
status posts to the popular social networks without
having to deal with the websites directly and of course
without needing to manually type anything.

Speech-to-Text: In order add to the hands-free experi-
ence, a speech recognition component enables users to
dictate a message by gazing at the microphone button
and recording their voice.

3. DESIGN APPROACH

3.1 Architecture Overview

The Eye Tribe module requires no external power source
and can be connected to any computer via a USB port.
Once the tracker software and user interface are installed,
the tracker can be placed below the monitor for a quick



Connect
EyeTribe

|"-...-.-
N
Adjustable
Settings

Hurto-
completicn

System

Lpeech-to-

Start TRACE I
App -

Past to

Facebook to Type

Frature 5et

Figure 1: TRACE Application Components

Computer Running
TRACE application

Gaze mapped to

screen

coordinates
EyeTribe
Tracker

Figure 2: System Architecture

calibration. If successful, the user can proceed to run the
TRACE application until a manual quit or alternatively, a
loss of socket connection to the tracker.

3.2 Eye Tribe Hardware Module

The Eye Tribe Tracker is an eye tracking system that can
calculate the location where a person is looking by means
of information extracted from person’s face and eyes. In
order to track the user’s eye movements and calculate the
on-screen gaze coordinates, the Tracker must be placed be-
low the screen and pointing at the user. The user needs to be
located within the tracker’s trackbox. The trackbox is de-
fined as the volume in space where the user can theoretically
be tracked by the system. The tracker uses a camera and
high-resolution infrared LED in order to track the user’s eye
movements, captures images of the pupils, and runs them
through computer-vision algorithms to determine the user’s
on-screen gaze coordinates.

The Eye Tribe tracker represents the location on the com-
puter screen where a person is looking by a pair of (x, y)
coordinates. The tracker software is based on an Open API
design that allows the TRACE application to communicate
with the tracker server to get gaze data. This communica-
tion relies on JSON messages exchanged via TCP sockets.
The TRACE application receives tracker data in the form
of one frame per specified time interval. The content of
each frame is parsed to extract gaze coordinates, which is
then mapped to a key on the virtual keyboard. A connection
must be established between a client implementation and the
tracker server before messages can be exchanged using the

tracker API. Establishing such a connection involves opening
a TCP socket in the Python script and connecting to local-
host on port 6555. At this point the API protocol proceeds
to exchange JSON formatted messages over the socket con-
sisting of the latest frame data. This data contains the raw
gaze coordinate in pixels, the pupil size, normalized pupil
coordinates, along with other useful metadata.

| il

Figure 3: Eye Tribe Setup

— i
\-\!‘!

s \.- . o

Figure 4: Eye Tribe Gaze Coordinate Mapping

Application External applications (e.g. EyeTribe Ul)

Language-specific wrappers (C++, Java, C#)

SDK
l] Open API

Network

The eya tracking process.

Eyetribe Server Initializas device(s), frameworks, sarvars atc

No GUI - output goes through APl and log files.

HW Tracker

Figure 5: Program Design Overview

3.3 TRACE Keyboard Application

I initially wrote a wrapper in the Python programming lan-
guage in order to retrieve JSON formatted messages from
the device over a TCP socket. The application uses the



pygame library to display a virtual on-screen keyboard with
a built-in textbox. The user’s eye coordinates are mapped
to keys on the screen and according to some fixation time
(adjustable in settings), the input is registered and executes
the respective action on the text displayed. More advanced
features such as auto-completion, speech-to-text conversion,
media sharing, and adjustable settings are integrated into
the application. These components are explained in further
detail in later sections.

3.4 Front End Design

I designed the graphical user interface for the TRACE key-
board application using the pygame library. Pygame offers
a set of Python modules designed for writing games and
is therefore an ideal choice for writing GUIs as well. It is
extremely portable and runs on nearly every platform and
operating system, which is the main reason why I chose it
over the more popular Tkinter library, Python’s standard
GUI package.

The GUI features a virtual keyboard and textbox which ex-
pand the entire size of any screen. In order to optimize the
accuracy of gaze coordinate data, the size of each key is
maximized according to the size of the screen. The user can
always tell where on the screen he is looking because the
key mapped to real-time gaze coordinates is highlighted. If
a key is “selected”, a ripple effect is displayed on top of the
button to notify the user that the character is displayed in
the textbox. Further, the user may expand the key options
by selecting the SHIFT button which displays capital let-
ters or the &123 button which displays a set of numbers
and symbols.

SETTINGS

Figure 6: TRACE keyboard user interface

3.5 Auto-Completion Feature

The auto-completion component uses Hidden Markov Mod-
els trained on words extracted from Webster, Project Guten-
berg, and the user’s previously saved messages in order to
render the top 3 suggestions as the user “types” out a word.
The user has the option of manually “updating” the auto-
completion component with a set of typed words from the
settings menu. The HMM is re-trained upon each update:

e Transforms training data into ngrams of word-length
and normalizes each word

e Builds frequency distribution

e Uses distribution to predict the final states of a word
in progress

The corpus data extracted from Webster, Gutenberg, and
the user’s saved messages is first converted into a single
string. The string is then converted into a list of words
(ngrams of word-length) and each word is normalized such
that character case or symbols are ignored. At this point,
the model can determine the frequency of each word in the
corpus data. The frequency distribution contains informa-
tion about the most common words and their frequencies in
the corpus data. The next step in the process is the “condi-
tioning” step during which the model creates a probability
space of possible values of the next word conditioned under
the event that the previous word has occurred. This concept
can be summarized as:

P(word A and word B) = P(word B | word A) * P(word A)

P(word B | word A) refers to the probability of word A given
word B while P(word A) points to the probability distibution
represents all of the words that follow word A.

The auto-completion component is implemented in Python
and uses a simple parser to read the initial training data
and build the frequency distribution, the Pickle module to
serialize the information, and the scikit-learn library in order
to train and get predictions from the Hidden Markov Model.

Figure 7: Auto-completion in action

Keyboard Layout Alphabetical

Autocompletion Update

Figure 8: Manual auto-completion component up-
date

3.6 Speech Recognition Feature

The user has the option of selecting the MIC button in or-
der to record a speech and convert it to text displayed in
the application. This component is built on a pre-trained
HMM-ANN (artificial neural network) hybrid model, which



unlike the auto-completion component, cannot be re-trained
to adapt to the user at the moment. However, this improve-
ment is certainly something to consider for future work. The
basic procedure during the speech recognition process is as
follows:

e Split speech into words based on “quiet” time. For each
word:

e Convert recorded waveform into spectrogram
e Perform cepstral analysis to extract features

e Run the MFCC vector through the ANN-HMM model
to predict spoken word

e Accumulate the individually recognized words into a
sentence and display the word in the TRACE applica-
tion

3.6.1 Feature Extraction

Both individual models (HMM and ANN) were trained in-
dependently with the same training data downloaded from
Shtooka. The preliminary step in any speech recognition
system is to extract features thus selecting particular com-
ponents associated with an audio signal that can be used
to identify the spoken word. The feature extraction process
was consistent across both models. The isolated words were
converted from waveform to spectrograms and then trans-
formed into Mel Frequency Cepstral Coefficients (MFCC)
for feature extraction. Cepstral analysis uses the Mel scale
to perform an inverse Fourier transform of the log of the
Fourier transform of the signal. The data was consistently
sampled at a constant rate of 8kHz. Each word was divided
into 80 frames with equal lengths of 10 ms and 25% over-
lap on each side using the Hamming window function. The
cepstral analysis was then applied to each frame:

1. Compute the Fourier transform of each frame
2. Map the resultant energy values to the Mel scale

3. Compute the logs of the powers at each frequency on
the Mel scale

4. Apply a cosine transform to the values from the pre-
vious step

5. Collect the amplitudes of the resultant spectrum into
a vector to represent the feature vector set

3.6.2 Constituent and Hybrid Models

A Python program was written to simulate the training
and testing of a Hidden Markov Model in recognizing sin-
gle words from a small dataset. The program preprocessed
the training data, converted them into representations that
can be used by the model, and “learned” a unique HMM for
every word represented by the dataset.

The neural network consists of two hidden layers between
its inputs and outputs. The input layer contains 260 nodes
corresponding to the number of Mel-frequency Cepstral Co-
efficients (MFCCs) that make up the feature vector of an
input audio signal. The output layer assigns a unique node

to each word from the system’s entire vocabulary set. The
network was trained on the same dataset as the Hidden
Markov Model. A Python script was written to remove the
background noise from each of the recordings. A function
was implemented to calculate the MFCC of each training
sample and generate a 260 dimensional column vector. The
MEFC coeflicients were used as input to the neural network
which performs the target word classification. The goal of
the training process is to take an intended target recording
(with the spoken word already known) and to create a multi-
dimensional target vector. The procedure is as follows:

e Select a sample at random

e Calculate the output (prediction of what word the record-
ing is associated with)

— Compute both hidden layers as well as the re-
sponse using the sigmoid function

— Map output values to a range of [0, 1] using the
sigmoid transfer function

e Compute the error of the output which corresponds
to the absolute difference between the actual and the
expected outputs

e Update the weights of each hidden layer by using a
forward-backward algorithm

e Repeat the process until the maximum number of it-
erations is reached or until the error is minimized to a
satisfactory value

The ANN-HMM hybrid model utilizes a joint probability
from the likelihood values received from each individual model.
Since both models used the same training dataset and fea-
ture extraction process, the combination of their probability
values is a valid decision. The hybrid model, thus, does not
combine the two statistical models and re-train the data but
rather compares and combines the outputs of the two mod-
els run in parallel. For example, for a given input W, the
ANN model produces probability values AN Nw=x1,x2, ... :
0 < z < 1 where each z; represents the probability of W be-
ing a word associated with that index. Similarly, the Hidden
Markov Model passes W to each of the “sub-HMMs” that re-

sult in a probability vector set HM Mw=ml,m2,...: 0 < m <1

where m; is the probability value generated by each HMM
that is associated with a particular word. Furthermore, ac-
cording to the results from running both models on a test
dataset, we have two static vectors representing the likeli-
hoods that the model can predict a particular word correctly.
This can be represented as:

ANN-SUCCESS-RATE = p1, p2, ...
HMM-SUCCESS-RATE = ql, g2, ...

p; represents the probability that the ANN model predicts
the word associated with i correctly p% of the time.

Similarly, ¢; represents the probability that an HMM associ-
ated with word i predicts correctly q% of the time. The logic
decision of the hybrid model can be summarize as follows:



e Select the maximum probability values from AN Ny
and HM My

e If the indices corresponding to the two values are equal,
both models have predicted the same word as the out-
put. Thus, the hybrid model will output the word
associated with this index.

e If the indices mismatch such that the maximum prob-
ability value of AN Ny is at index i and the maximum
probability value of HM Mw is at index j, compute
compounded probabilities of the two models and se-
lect the prediction of the higher probability model:

— P(ANN) = (zipi + (1 = @i)(1 = ps)) = (z;p; + (1 -
z;)(1 = pj))

= P(HMM) = (migi + (1 —mi)(1 — qi)) * (m;q; +
(1 —my)(1 —q5))

— If P(ANN) > P(HMM), then select the word as-
sociated with index i

— If P(HMM) > P(ANN), then select the word as-
sociated with index j

16

Convert to N}i
Spectrogram E 13
»12

B

]

Frequency

Record
speech as
waveform

— |/ ANNFMMFybrid Model
/
0 W W W e —
Time (ms)

Figure 9: Speech recognition process

3.7 Media Sharing Feature

TRACE is able to communicate with the user’s Facebook
account in order to post messages on their behalf. After
enabling the application to post to Facebook, the user may
proceed to eye-type any message in the context of TRACE,
gaze at the Facebook button and post the message directly
on the Facebook wall.

This component uses the Facebook Graph API in order to
get data in Facebook. It is a basic HTTP-based API that
can be used by any application to query data, and post
comments or photos. Most API calls, in particular posts,
require the use of access tokens. A unique user access token
is required in order for TRACE to post to an individual’s
Facebook account. The first time the user starts the ap-
plication, TRACE requets access and permissions via the
Facebook SDK and a login dialog. Once the user authen-
ticates and approves permissions, the user access token is
returned to the TRACE app and used for future post calls.

SETTINGS

Figure 10: TRACE Facebook button

l J TRACE

hi

Boost Post

o
«

Like - Comment - Share

m: J TRACE

happy Memorial Day weekend

1 person reached Boost Post

—
4

Like - Comment - Share

Figure 11: Eye-typed posts on the TRACE Face-
book page

3.8 Customizable Settings Feature

With the TRACE software, the user may modify settings
and customize the gaze interaction experience with the ap-
plication. The settings are saved to a configuration file which
is loaded in future instances of the application. Currently,
the user may adjust and save for future use, the following
options from a settings menu:

e Gaze duration : The time required to register a gaze
as an input. The default value is set to 1 second with
a lower bound of 0.3 second and no upper bound. Ac-
cording to this value, the application determines the
frequency of frame data acquisition from the Eye Tribe
server. The algorithm to determine whether or not a
key has been selected is very simple. Assume that the
user has set the gaze duration value to 1 second. The
program must then proceed to fetch frame data from
the tracker every 1 / 5 = 0.2 seconds since for every
frame:

1. The gaze coordinate is mapped to a button on the



keyboard
2. The value of the button is saved to a queue

3. The program then looks at consecutive sequences
of five letters from the queue and if the same letter
is repeated five times, it is considered as a key
“press”.

e Layout of the keyboard : To configure the keyboard to
use a different layout, the user can choose the ANSI or
Alphabetical buttons from the settings menu by gaz-
ing at the intended button. Once selected, the button
should be highlighted but the changes will not be dis-
played until the user selects the Apply button.

Gaze Duration

4 |

Keyboard Layout Alphabetical

Autocompletion Update Cancel

Figure 12: Settings menu

SETTINGS

Figure 13: Alphabetical keyboard layout applied

4. END PRODUCT WALK-THROUGH

Every user who starts the TRACE application begins with
the same default configuration and user interface. Here, they
may proceed to simply gaze at the keys in order to type a
message or look at the settings button in order to customize
the keyboard layout or the number of seconds it takes to
register a fixed gaze. The auto-completion feature (which is
updated automatically before the program exits according
to typed messages or updated manually from the settings
menu) enables the program to adapt uniquely to each user.
In the future, the program starts with the user’s previously
saved settings options and auto-completion data.

At the moment, the only context reached outside of the ap-
plication is Facebook. Upon gazing at the Facebook button,

the user is able to post a typed message from the TRACE
textbox to his/her account (after allowing the application to
post to Facebook).

The user can speed up the typing process via the speech-
to-text or auto-complete features. As the user gazes and
enters a character, the top three auto-complete suggestions
are displayed as buttons above the screen. At this point, the
user may gaze at any word to transfer it to the textbox or
proceed to type out extra characters to improve the auto-
complete suggestions. By gazing at the speech-to-text but-
ton in the lower left corner of the screen, the user may
record a clear message, which is then converted to text and
displayed on the screen. In order to exit the application,
the user must gaze at the ENTER button. At this point,
the auto-completion feature is updated according to the dis-
played message and the message is also added and saved to
a local file on disk.

S. FUTURE WORK

Many patients, at times, need to type out the same message
on a frequent basis. It would be ideal to be able to implement
a way of storing any message typed at some point. Of course,
it would be difficult to just scroll through a list of saved
messages to select something. Therefore, if the messages can
be organized by a category or in an organized fashion, that
would be optimal. To store persistent data, I will need to
construct a database backend. The database solution must
be cost-free and easy to interface with. Therefore a simple
solution such as Reddis to store data in key, value format
is preferred. Previously written messages can be saved by
“category”. This feature can also feed saved data into the
auto-completion component to furtheradapt to the user.

Future work would primarily focus on extending the func-
tionality of the application to control OS operations, thus
replacing the mouse/keyboard entirely. This enables the
users to access and use any application using only their eyes
(pop-up virtual keyboard).

Future work can also exploit Swype-like technology in or-
der to implement a more accurate keyboard that follows the
user’s gaze across keys to predict the intended word. The
application would feed the first and last keys the user has
looked at, as well as the pattern of the eye movements be-
tween the two keys, into the algorithm in order to determine
the complete word.

Unfortunately, there was not enough time to extensively test
the prototype with different users. Understanding how dif-
ferent people use and feel about the product is very impor-
tant in achieving high user satisfaction. Therefore, a large
part of future work consists of talking to testers and watch-
ing them interact with the TRACE application.

6. ACKNOWLEDGEMENTS

I owe many thanks to my research mentors, Professor Ken-
neth Pickar and Professor Adam Wierman, for their guid-
ance and support throughout the course. Thanks also to
Professor Matilde Marcolli and Professor Steven Low for
their various and invaluable contributions in particular to
my research on speech recognition systems.



7. REFERENCES

[1] Eye Tribe: https://theeyetribe.com

[2] PyGame Library: http://www.pygame.org/tags/libraries
[3] Machine Learning Models: http://scikit-learn.org

[4] Tobii DevDocumentation:
http://developer.tobii.com/documentation

[5] Project Gutenberg: http://www.gutenberg.org/wiki/

[6] Shtooka : http://shtooka.net/download.php



