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ABSTRACT
The cellular chemical reaction networks within living organ-
isms are complex network structures that represent differ-
ent molecular species in living cells and the relationships
between them. These relationships are not always well-
understood and can potentially hold a large amount of in-
formation for biological and medical research.

We investigated several automated approaches to research-
ing these types of networks, drawing upon web graph and
text analysis techniques that have proved their worth in
other applications. Subsequently, we determined several po-
tentially effective approaches for analyzing such chemical
systems and identified next steps for this type of research.

Categories and Subject Descriptors
E.1 [Data Structures]: Graphs and networks; J.3 [Life
and Medical Sciences]: Biology and Genetics

General Terms
Theory, Verification

Keywords
Chemical Reaction Network (CRN), Petri Net, PageRank,
Hyperlink-Induced Topic Search, Term Frequency-Inverse
Document Frequency (tf-idf)

1. INTRODUCTION
As modern scientific fields develop, computational analysis
plays an increasingly prominent role in scientific research.
Here at Caltech, biological concepts have always inspired
novel engineering applications. However, such an interac-
tion can go the other way. Through this project, we ex-
tended several graph analysis techniques to study biological
processes so that we can better understand biological sys-
tems.

We took chemical reaction networks (CRNs) that model bi-

ological processes and represented them in different graph
formats so that we could apply graph analysis to these net-
works. By analyzing the PageRank of each molecule and
studying the hubs and authorities of the overall graph, we
learned which molecules are the most important players in
a cellular reaction network and which genes are the most
prominent in causing a disease. We also analyzed the clus-
tering relationships between groups and gained more insight
in how species interact with one another.

In the last few weeks, we began to compare networks di-
rectly against each other and also to investigate the effects
of the removal of a single reaction or species from a graph
with perturbation analysis. Finally, we looked into incorpo-
rating term frequency-inverse document frequency (tf-idf)
analysis into our results, in order to better identify the rare
but important species in a network that sometimes end up
lower on the PageRank and HITS rankings.

2. MOTIVATION / APPLICATIONS
2.1 Insight into the Inner-Workings of a Cell
By applying graph analysis techniques, such as modified
PageRank and HITS algorithms, to the CRN graph rep-
resentations, we can determine which species are the most
vital for a cell’s function. For example, with the HITS algo-
rithm, a hub species could be one that’s produced by a lot of
authority species, and authority species could be a species
that is a very important reactant (or perhaps enzyme).

We can also use clustering analysis to identify major path-
ways and shortest paths to identify how many and which
reactions need to proceed until a desired species is produced
or completely degraded. Finally, incorporating techniques
used for text analysis, like tf-idf, we can adjust the rankings
results to reflect the rarities of various species to produce
a better measure of species importance within a chemical
system.

2.2 Medicinal Applications: Disease Research
and Potential Treatment

The results from this research can be applicable in many
areas of medicine, especially the treatment of diseases. For
example, if the CRN graphs turn out to have clustering re-
gions that are generally distinguishable and not overlapping,
this modular structure may make the results of an addition
of a subnetwork of chemical reactions to treat a particular
health condition more predictable.



Furthermore, we can study which genes or molecules are the
most important in a disease network. With this information,
we can determine which molecules are the biggest factors in
the pathology of the disease or which genes are the most
likely causes of a disease. This could mean that we can find
new potential targets for treatment. This can be extremely
useful for devising new ways to deal with diseases that are
currently difficult to treat or for learning about diseases that
we know little about.

Also, by analyzing components of a CRN, we can predict
results of eliminating certain elements or blocking certain
receptors. This will allow us to make preemptive guesses
towards how some chemical components will react with the
overall biological cell cluster. Many diseases are caused by
certain subtle changes in cellular structure. By analyzing
the CRN of such cells alongside normal cells, we can possibly
evaluate the overall impact of small changes in the general
reaction network.

Finally, a major benefit of using CRNs to analyze such prop-
erties of cells and diseases is that this method of analysis
offers a new perspective alongside the traditional biological
approaches. The calculation of PageRank, centrality and
other graph properties is done via deterministic algorithms
by computers. Therefore, this method of analysis is less
affected by human perception and bias. Since previously
much of the analysis was done by hand, the automation of
this process saves a lot of time as well.

3. EXISTING RESEARCH
3.1 Theoretical Prior Research
There has been much theoretical analysis done on chemical
reaction networks.

3.1.1 CRN Theory
Fleinberg’s Chemical Reaction Network Theory is a classic
example of analyzing chemical reaction networks without
precise parameters. August and Barahona enhanced that
method of analysis by extending the methodology to more
quantitative aspects of biochemical reactions networks [5].
August and Barahona were able to show that since many
biochemical reactions conserve mass and do not involve in-
flows or outflows, these graphs can be shown to be not di-
vergent by simply analyzing the structure of the network
graph. They achieved this by showing that such biochemi-
cal reaction networks have a bounded absorbing set in the
case that mass is conserved. This analysis can be applied
not only to weakly reversible chemical networks, but also to
biological networks because the methodology can be shifted
from stationary reactions to oscillatory networks.

3.1.2 Deficiency-Zero Stationary Distributions
Similar to August and Barahona above, Anderson, Craciun,
and Kurtz based their research off Fleinberg’s Deficiency
Zero Chemical Reaction Network Theorem [7]. The theorem
states that if a network satisfies the easily-verified deficiency-
zero properties, then there is one equilibrium within each
compatibility class and that equilibrium is asymptotically
stable. This means that if a network satisfies the assump-
tions of the theorem, then the theorem completely applies
to the dynamics of the network. Anderson et al took this

theorem further by examining both deterministically and
stochastically modeled chemical reaction systems and prove
that there is a stationary distribution if the kinetics is gen-
eral.

3.1.3 More Graph Theory
There have been other applications of graph theory to CRNs.
For example, in “A Graph-Theoretic Analysis of Chemical
Reaction Networks,” Othmer laid out a method of produc-
ing a representative graph from a set of species and their
stoichiometric ratios [28]. This method was then used to set
up theoretical proofs of various properties on such graphs
including a set of conditions which lead to the existence of
a steady state. The proceeding of reactions over time can
be viewed as flow through the system, and one can view the
steady-state as the system state where the flow is balanced,
which is when all time derivatives of concentrations are zero.

3.1.4 Reaction Network Topology
When modeling complicated dynamic chemical models, the
molecular changes are not only restricted to basic physical
properties. In any chemical reaction network, new molecules
can be generated, which is very difficult to properly model.
Flamm and Stadler studied several models of theoretical
treatments of complex chemical networks and described the
topology of such reaction networks using generalized clo-
sure functions. Dynamic system models trace the time-
dependency of the amounts of different chemicals in a reac-
tion network, which is similar to how the dynamics of genes
in organisms are traced. To study such dynamic network
topology, Flamm and Stadler studied the dynamic system
[12] of Fontana and Buss’ work on constructive dynamical
systems [13], in which every interaction is an algebraic ex-
pression. They also look at computer-aided organic syn-
thesis modeling techniques to study large networks, such as
metabolic networks.

3.1.5 Inferring Meaningful Pathways
Since we decided to briefly analyze metabolism as a proof
of concept, we needed to be able to find meaning pathways
in a small metabolic cycle. Croes and Couche presents a
way to use weighted graphs to infer important metabolic
pathways [8]. We took a different approach in that we chose
to analyze important species instead of inferring important
pathways and we did not end up using weighted graphs.
We decided that since PageRank of the web graph does not
depend on weights and we are trying to model our analysis
after that, we should not worry about weights.

3.1.6 Graph Theory and Biological Networks
Finally, Aittokallio and Schiwikowski further developed the
actual idea of using actual graph theory to analyze biologi-
cal networks instead of just chemical reaction networks [3].
Furthermore, they came up with some concrete ideas for
how to analyze a biological model. Also, Aerts et al. talked
about how to use graph analysis to identify important in-
dividual elements in a system using clustering analysis and
some form of node ranking [24].

3.2 Prior Work on Actual Analysis
There have also been some prior work done on actual applied
analysis of biological systems using graph models.



3.2.1 Medusa: Exploring Clusters
Aerts et al. explored the possibility of using Medusa to per-
form clustering analysis on biological models [16]. Medusa is
a very powerful tool that is used to visualize biological mod-
els on a large scale and provides many layouts and means
to explore clustering. In our project, we implemented two
different measures of clustering analysis. However, we did
not use any sort of visualization software to aid our analysis.
This is partially due to the fact that none of our network
is large enough to really warrant a standalone visualization
software.

3.2.2 Centrality Analysis
In their paper, Koschutzki and Schreiber discuss using dif-
ferent centrality analysis methods to learn more about gene
regulatory networks [21]. They explored several different
centrality measures, such as degree centrality and closeness
centrality. While centrality measures can be interesting and
informative, we elected to not perform centrality analysis
even though we work a lot with gene regulatory networks
in diseases. A huge reason for this is the fact that most of
databases provide inconsistent data in terms of connections
and we would frequently encounter components that are dis-
connected or nodes that don’t link to anything else. This is
explained further in Section 5.

3.2.3 Genome Studies
Genome-wide association studies allows biologists to study
complex genetic traits and how they are passed down. They
also allow the study of mutations and how those manifest as
traits. Akula et al. came up with a network-based approach
to distinguish what kind of results are the most important
or informative from such genome association studies [26].
While we do similar network-based analysis on genes, we
focus more on specific networks and less on genomes for a
whole species.

4. PROJECT DESIGN AND APPROACHES
4.1 Initial Data Collection
4.1.1 Data Sources

We collected data from a variety of databases and other
sources. For human metabolism, we used the BioModels
database and the Reactome project. The majority of our
data, however, came from the KEGG database. It provided
a variety of networks such as metabolism, cell cycle, and
disease pathways. Finally, the Microsoft Research tool Vi-
sual GEC was used to convert manually inputted CRNs into
SBML format.

4.1.2 Data Types
There are two primary data formats that we managed to
obtain. The first is simple XML files that contain all the
species/genes in a network and the reactions between the
species. Many databases have their data in some form of
XML. Many other databases have their files in the form
of SBML (Systems Biology Markup Language), which is a
fairly standardized format for computer modeling of biolog-
ical processes. Not only does it establish a nice convention,
many XML files can also be easily translated into SBML
files through tools such as KEGGTranslator, which takes a
XML file from KEGG and transforms it into a SBML file.

Figure 1: Graph Representations. (a) An example
of how a bimolecular reaction is converted to the
Reaction-to-Product (RTP) links type of graph for-
mat. There is a directed link from every reactant to
every product for every reaction in the system. (b)
The conversion of the same bimolecular reaction to
the simplified Petri Net representation, which uses
a special node for each reaction, with the reactants
pointing into it and products pointed to from it.

There are many representations, or levels, of SBML, where
subsequent levels have more information on reactions com-
pared to the previous. We worked primarily with the level
that shows all genes/species and reactions between them in
simple graph representation.

4.2 Data Standardization
As mentioned above, our data came from a few different
sources, each with their own special way of representing the
data. In order for our project to be feasible on a large scale,
it was necessary to design one standard format which we can
convert all of our data into. The design we settled upon was
to create a list of reactions from each graph, using one of
two possible formats: RTP and Petri. Each list is stored in
a tab-separated data file, where a single line represents an
edge of our graph (in particular, each line has the starting
vertex, then a tab, then the ending vertex). From there,
we can then read in the list of edges from the stored data
file into a Python dictionary, which is what all pieces of our
analysis code then take as their primary input.

4.2.1 Standard Graph Types
Before converting our given data files into a standard format,
we first had to determine what that standard format would
be. In the end, we settled upon two different formats, and
decided to use both of them, in order to see which would
work better with our analysis.

4.2.1.1 RTP. The first form of graph representation we
analyzed, reaction-to-product (RTP) links, has a directed
edge from every reactant in a reaction to every product. An
example is shown in Figure 1a, which shows the nodes and
links involved in a single bimolecular reaction. Although
it is a rather simplistic model, it does effectively capture
the directional cause-effect relationship between a reactant
and product. Another advantage of this approach is that
each node’s ranking can be directly compared to that of



every other, as every node in the graph is a different species
in the network. Finally, species that act as catalysts in a
reaction (and therefore don’t get consumed) will have self-
loops, since they will serve as both reactants and products
in the same reaction. This makes it very straightforward to
remove certain effects of catalysts from network analysis if
desired, as all self-loops could just be ignored.

4.2.1.2 Petri Net. The other type of graph representa-
tion we investigated was a simplified Petri Net representa-
tion. This representation uses a special node for each re-
action. All reactants link to the special node, which then
points to all of the products. An example of this is in Fig-
ure 1b, which shows the Petri net conversion for the same
reaction as used in Figure 1a.

In a more quantitative representation of a Petri Net, edges
are weighted with the coefficients of the species for each
reaction [20]. There are several reasons we chose not to
include this additional information or rate constants on the
graph. The primary reason is the sparsity of this data, as will
be discussed in the Data Sparsity section below. However,
we argue that it is not unreasonable to use an unweighted
graph - the PageRank algorithm, for example, does not need
to take into account number of page visits and link clicks to
be effective in its analysis. Our CRN analysis may not need
to take into account species concentration and rate constants
to be similarly effective.

4.2.2 Parsing Data Files
When writing our parsing code, we had to make sure that
we could read any given input file equally well (no matter
what data type it was). Thus, when given a file, we would
check its data type — when we have an XML file, we can
run the XML parser, and when we have an SBML file, we
can run the SBML parser.

4.2.2.1 XML. Our primary source of XML files was from
the KEGG database, and all such files were formatted in
roughly the same way. Each vertex of our graph, represent-
ing a compound in our system, was found in an “entry” tag,
such as the one shown in Figure 2; the edges of our graph
(representing connections between compounds) were found
in “relation” tags, such as the one show in Figure 2.

When parsing a given XML file, we then simply looked for
entry and relation tags, taking relevant information from
each. The format of the XML file places all entry tags first,
followed by all relation tags — we take advantage of this
later on.

In the case of entry tags, we stored the entry ID value along
with the “graphics name” of the vertex (that is, the sec-
ond string associated with the vertex’s name, rather than
the first). We had originally used the first value for name,
but eventually decided against it, as the second value was
more descriptive (whereas the first value simply referred to
KEGG’s internal name for the compound in question).

In the case of relation tags, we first took the two entry ID
numbers associated with each relation and translated them

into their associated compound names (since, as mentioned
previously, all entry tags will have been parsed before any
relation tag is reached). This pair of compounds then rep-
resents an edge of our graph, and so we write it to the data
file. In particular, when we are writing a data file for RTP
graphs, we simply write the edge as is; when writing a data
file for Petri Net graphs, we create multiple edges (via the
intermediate node that each “true” reaction has) to be writ-
ten.

4.2.2.2 SBML. As it turns out, parsing SBML files was
much easier to do than parsing their XML counterparts. A
Python library exists for reading and manipulating SBML
files, which we used extensively at this stage of our code.
Using the tools from that libary, we were simply able to read
the input file as an SBML document, get the list of reactions
from said document, and write the reactions to our output
data file in our desired tab-separated format (modifying the
list of reactions as necessary, depending on whether or not
our output type was RTP or Petri).

4.2.3 Conversion to Python Dictionary
Our various methods of analysis all take as an input a Python
dictionary, in which each key is a vertex of our graph and
each value contains a collection of that vertex’s connections
(in particular, the value is actually a pair of lists stored as
a tuple — the first list contains the vertices which point to-
wards our given vertex, while the second list contains the
vertices which our vertex points to). To create this dictio-
nary, we may simply read our data file to get the list of edges
which comprise our graph, since each data file is now stan-
dardized to actually just be a list of reactions (where each
line is a single reaction and each reaction is a tab-separated
pair of compounds). As we do so, we can construct entries in
the dictionary for the given compounds of a reaction (if they
don’t exist already), and add to the dictionary the relevant
connections which arise from each given edge.

4.3 Data Analysis
4.3.1 Analysis of One Graph

The first few types of analysis we perform are meant to be
done on a single graph, and yield useful information about
how some important compounds in a particular system as
compared to other compounds in that system.

4.3.1.1 PageRank. PageRank is a link analysis algo-
rithm created by Larry Page. Basically, PageRank assigns
a number to a set of elements where each number repre-
sents how “important” the element is in the set. Although
it is primarily used by the Google search engine, PageRank
can also be used on any collection of elements that form a
graph. In this case, we apply the algorithm to cellular reac-
tion networks and calculate the numerical weights, or “rank”
for individual elements in the CRNs and measure their rel-
ative importance. [31]

4.3.1.2 HITS. Another popular link analysis algorithm
is HITS, or hyperlink-induced topic search. This algorithm



<entry id=‘‘28” name=‘‘hsa:10379” type=‘‘gene”
link=‘‘http://www.kegg.jp/dbget−bin/www bget?hsa:10379”>
<graphics name=‘‘IRF9, IRF−9, ISGF3, ISGF3G, p48” fgcolor=‘‘#000000” bgcolor=‘‘#BFFFBF”

type=‘‘rectangle” x=‘‘676” y=‘‘844” width=‘‘46” height=‘‘17”/>
</entry>

<relation entry1=‘‘27” entry2=‘‘28” type=‘‘PPrel”>
<subtype name=‘‘binding/association” value=‘‘−−−”/>

</relation>

Figure 2: Example code from a KEGG database XML file.

was developed by Jon Kleinberg before the invention of PageR-
ank. This algorithm focuses on two types of pages: hubs and
authority pages. Hubs may not have accurate or authorita-
tive information, but hosts (points to) a large set of pages
which do have authoritative information. Authorities, as
the name implies, are pages that may not be hubs, but hold
valid and accurate information. This algorithm ranks web
pages by their hub values and authority values. [31, 19]

4.3.2 Analysis of Many Graphs
While comparing compounds within a single system is use-
ful, there is also much to be gained by comparing multiple
graphs to one another, and determining the ways in which
they differ.

4.3.2.1 Perturbation. Given two different graphs, we
make a list of all vertices from the two, along with their
PageRanks and the order of their PageRanks in their re-
spective graphs. Note that if a node from one graph is not
present in the other, we treat it as having PageRank 0 in
that second graph. Then, we sort the list of vertices by the
absolute value of the change in PageRank from one to the
other and also list the percentile change of ranked-order.

4.3.2.2 TF-IDF. When rating text documents given a
text query, the rarest words are often considered the most
important, since they can give more insight into what dif-
ferentiates one document or query from another. On the
other hand, more common stop words, like “the” and “of”,
are not that useful. One sort of “rarity” measure of a word is
the tf-idf, or term frequency — inverse document frequency,
which is computed based on the frequency of a word in a
given document and the frequency of that word in all docu-
ments. [29]

Extending this to our project, we use the analogy of individ-
ual species as specific words and different CRNs as separate
documents. Thus, tf-idf measures could indicate the im-
portance of a species in a particular CRN, based on how
many reactions it occurs in in that CRN and how many
times it appears in reactions in other CRNs in a set. It was
our hope that the equivalent of “stop words” (i.e. species
that are common in most of the networks), would no longer
dominate the tops of the rankings once tf-idf analysis got in-
corporated, and differences between diseases could be more
effectively highlighted. One thing to note about this analy-

sis is that it doesn’t utilize the specifics of the document’s
word structure (i.e. word order), so in our case the network
structure of the CRN is not taken into account when eval-
uating a species in it. It will be interesting to compare the
results of this analysis to the results of those that do utilize
network structure.

Incorporating this structure-independent technique into our
structurally-focused network analysis can allow us to negate
the effects of species which may dominate the PageRank
results simply by being involved in many reactions. Our
results from this analysis are discussed in Section 6.

5. CHALLENGES
5.1 Data Standardization
Possibly the biggest challenge that we encountered had to
do with getting data in different formats to work together
and be able to analyze them side-by-side. There are an
obscene number of databases online that provide networks
and graphs in some form or another. However, there is zero
guarantee that the different databases have the same data
formats. Therefore, it took a lot of work just to get our
analysis code to work with data of different formats.

Even within data of the same formats, the naming con-
vention and the labels may be completely different. One
database might store genes and molecules with a specific
number that only matches to a name in their own local
database. Obviously this would cause problems with per-
turbation analysis. Molecule KP-463 could be the exact
same thing as molecule BG-568 in another database, but
we wouldn’t know that just from the data format that they
provide. Therefore, we had to do some cross-referencing
between databases and settle on a universal convention of
names and standard molecule/gene database to extract the
species names from.

As we previously mentioned, there are many levels of SBML
representation. Therefore, we would have the problem where
some database stores SBML in a level with less informa-
tion than desired but display the graphs with no associated
datafile. We even ran into this problem with some KEGG
files where the actual XML or SBML file does not maintain a
list of the connections between nodes, only the nodes them-
selves. However, they would have a picture of the graph in
their database, just no file to reconstruct that graph. This
was one of the more frustrating things to deal with and usu-
ally when that happened we just looked for a similar network



elsewhere. Of course, converting from a higher-level SBML
to a lower-level one is not extremely tough, KEGGTrans-
lator has that capability. The real problem was when we
found SBML files in a lower level than we would have liked.

5.2 Pathway Integration
Often in our search for newer and better data, we would
encounter a large network that we would like to analyze.
Upon closer examination, we would then find that the large
network incorporates several smaller sub-networks. How-
ever, different databases treat these sub-networks differently.
Sometimes they are treated as a single node in the graph,
while other times they are simply referred to but not actu-
ally connected to anything. Usually we managed to find the
specific graph representations of those smaller networks as
well and were able to analyze them separately. In the rare
cases where they are unavailable, we simply ignored them,
which might mean that some of the important but smaller
changes were overshadowed in the process.

5.3 Data Sparsity
Another issue we encountered with the data was the in-
consistency in information provided. Some data sources in-
cluded information about species’ concentrations and which
compartments they were in, whereas others included nei-
ther. Furthermore, only a few of the sources had any in-
formation about rate constants and stoichiometries. This is
one of the reasons we opted to not include this information
in our graphs (e.g. as weighted edges in Petri Nets). Since
species didn’t always have a consistent set of quantifiable
data about them available, it seemed more reasonable to
only use metrics that were applicable to all of the networks
we were analyzing. This meant that we could easily com-
pare our results for different networks and not worry about
the most appropriate way to incorporate this information
(which usually wasn’t available) into our graphs.

5.4 Graph Structure
In close relation to the non-standardized data issue, many
of the datafiles that we can obtain have nodes that are not
connected to anything. For example, some KEGG pathways
would have nodes that appear to be connected on their graph
representation, but the connections would not be there in
the XML files. Therefore, we would have some nodes that
are considered by KEGG to be not particularly important,
but completely disappear when we reconstruct the graph us-
ing the XML files. However, we may want to still look at
them for analyses, such as tf-idf. Furthermore, since close-
ness is only viable on connected graphs, we could not really
incorporate closeness analysis into most of our research.

5.5 Coding Challenges
One member of our group was working primarily on Linux
throughout the project while the other two members were
using Windows. Since we used a version control program
(Git), this should not have been a problem. However, the
SBML library does not work well with Linux, which meant
that the member using Linux could not actually run any of
the code that he wrote. This meant that we spent a lot
more time than we would have liked on debugging. The
Windows vs Linux problem also came into focus when we
needed Python to read and write filenames. Since file paths

are formatted differently by Windows and Linux, we ran
into some more issues with that discrepancy. Eventually we
managed to fix all the bugs and get everything working, so
this was a relatively minor setback.

5.6 Database Unavailable
Another issue that we encountered was that sometimes, the
databases that we have come to rely on would just become
unavailable. For a long time, the Reactome database would
tell us that the Caltech mirror was down and then redirect
us to a British mirror, which would then also fail to work.
Obviously, there was nothing we could do about that, so
we just had to wait it out and hope that it was not down
forever. Fortunately, that was not the case and it went up
in a week.

At one point, the KEGG database underwent some sort of
renovation or database cleanup and the button that pre-
viously allowed us to download the files disappeared. We
could still view the graph representations, but we had no
way to download the files. We figured out a slightly hacky
way eventually that allowed the KEGGTranslator software
to not only save the SBML that it converted to, but also the
XML file itself for us to parse. Two weeks later, the button
that allowed us to download files came back and we had no
further problems with that.

5.7 General Lack of Expertise
Clearly, our project integrates computer science with a lot of
biology. This is somewhat problematic as our entire group
consists of computer science majors. Therefore, it was diffi-
cult to decide on what kind of data would be most conclusive
for us to analyze. Furthermore, even after we had the anal-
ysis complete, it was not the easiest for us to make sense of
our results and determine what is reasonable. Fortunately,
we were not completely unschooled in biology and most of
us had some degree of experience with genes and molecules
in a cell reaction. We also had a lot of outside help in the
form of professors and other students. Finally, we made
up any further lack of knowledge through extensive research
and literature reading.

6. RESULT AND EVALUATION
6.1 Perturbation Analysis: Gene Regulation,

a Toy Model
We considered several different metrics for perturbation anal-
ysis, and in the end we narrowed this to two. Consider
species X with a PageRank value of PR1 and rank R1 in
network 1 and PR2 and rank R2 in network 2. Then, the
metrics we investigated were:

• Direct comparison: PR1 − PR2

• Proportional: PR1 / PR2

• Given some weighted distribution function f(x) over
the domain [0, 1], calculate |f(PR1)f(PR2)|

• Jump in ranks: |R1 − R2|

• Change in percentile |%R2 −%R1|



As a proof of concept and as a tool for narrowing down
our metrics, we used a toy model of gene repression. This
model has four molecular players involved — G, M, P, and
GP. Species G represents a gene, M the mRNA (which gets
transcribed from the gene), P the protein (which is trans-
lated from the mRNA), and GP the protein bound to the
gene (i.e. repression). In a sort of feedback mechanism,
the produced protein can go back and repress the gene that
originally produced it. This prevents the gene from con-
tinuing to transcribe more mRNA and therefore prevents
more of the protein from being created until the protein
then unbinds from the sequence. The transcription, trans-
lation, binding, and unbinding steps can be represented in
the following chemical reaction network:

G→ G + M (Transcription)

M →M + P (Translation)

M → ∅ (mRNA degradation)

P → ∅ (Protein degradation)

G + P → GP (Binding)

GP → G + P (Unbinding)

The mRNA strands and protein will also degrade naturally
at some rate in a cell, which is represented by M and P being
converted to nothing in the two degradation reactions.(The
reactions for this network come from [30]).

As a perturbation to this network, we decided to look at how
PageRank results changed if the effects of repression (i.e.
the binding and unbinding reactions) were removed. The
removal of this medium of interaction dramatically changed
the rankings - mRNA went from having the lowest PageR-
ank value to the highest when repression effects were re-
moved, and GP went from having the top PageRank value
to the lowest (due to its non-existence) in the non-repression
model. On a high level this makes sense, as one would ex-
pect the mRNA to play a more important role in the system
when it is continually being produced and producing the
protein, whereas its role would be more limited in a system
where the protein it produces goes back and prevents more
mRNA from being transcribed.

Through this process, we determined that the most useful
metrics would be either a direct difference in PageRanks
or the same difference with some distribution function ap-
plied. The difference in ranks between two networks is highly
volatile and not very informative, and the proportional anal-
ysis results in a lot of 0’s and ∞’s (which is not very use-
ful), since not all species are likely to be present in both
networks. In the end, we opted for two metrics: direct dif-
ference in PageRanks and difference in percentile, each of
which reflects its own wealth of information.

6.2 Strong Hubs as Major Initiators
We found the top-scoring hubs returned by the HITS algo-
rithm were often the species that initiate the process mod-
eled by their networks, either by sensing the environment
(as in the case of chemotaxis) or by being activated (as in
apoptosis). Because these are such strong hubs, the next
level of species (i.e. those triggered by the hubs) are gener-
ally highly ranked authorities. We investigated this behavior

with three networks — bacterial chemotaxis, the human cell
cycle, and programmed cell death.

6.2.1 Bacterial Chemotaxis
Bacteria sense chemical gradients of attractants and repel-
lants and move their flagella (and therefore the entire organ-
ism) based on this sensing. This process, known as bacterial
chemotaxis, is quite effective. Bacteria move in a sort of ran-
dom walk motion, turning in random directions with their
“tumbling”motions. If a larger amount of attractant is being
detected by a bacterium than was detected in the past, then
its tumbling frequency gets lowered, which means it is more
likely to continue moving in the direction of the sensed in-
creasing temporal gradient. Conversely, if more repellant is
being seen, the tumbling frequency gets ramped up, increas-
ing the likelihood that the organism will move in a different
direction than the high concentration of repellant. Thus,
the sensing of temporal gradients of chemicals can help to
guide the organism in a more advantageous direction. [4]

The top-scoring hubs in the chemotaxis reference pathway
in the Kegg database are the Aerotaxis receptor in first
place, followed by the Methyl-accepting chemotaxis proteins
(MCPs). These are the species involved in sensing the en-
vironment and initiating the process which will end in cell
motility. The Aerotaxis receptor, referred to as Aer, senses
inputs from within the cell. The four MCPs, MCPI, MCPII,
MCPIII, and MCPIV are tied for second place hubs, and
they are sensor receptors for extracellular serine, aspartate,
ribose and galactose, and peptide, respectively. [15] The top-
ranked authorities in the system are CheA (a protein kinase)
and CheW (a protein), the two species directly linked to by
the Aerotaxis receptor and MCPs. Thus, the species cru-
cial in initiating and carrying out the first steps of flagellar
movement based on temporal chemical gradients are those
that are high-ranking hubs and authorities, which provides
good evidence for the hypothesis.

6.2.2 Human Cell Cycle
In the case of the human cell cycle reference pathway in
the Kegg database, the subunits of the origin recognition
complex (ORC) all came in first place for top hubs, tied
with the cell division control protein 45 (CDC45) and the S
phase kinase activator (DBF4). The only species with any
significant authorities values were MCM2, MCM3, MCM4,
MCM5, MCM6, and MCM7, which are all components of
the mini-chromosome maintenance complex. These results
are in line with those expected - for DNA replication to be
initiated, the first thing that must happen is the binding
of the ORC to a strand; then the MCM complex can form
around it. DBF4 and CDC45 also act upon the MCM com-
ponents, which is why they also rank highly as hubs. The
ORC and MCM are crucial pieces of the pre-replication com-
plex, which, once fully formed, can initiate DNA replication
through a series of other interactions. [22]

6.2.3 Programmed Cell Death (Apoptosis)
In the programmed cell death reference pathway for humans,
the only species with a significant hub value is FADD, or the
Fas-associated protein with death domain. This protein will
be discussed in more depth in the cancer results below, but
it is relevant to note here that it initiates the process of



programmed cell death [9], which matches the hypothesis
regarding hub values proposed above. FADD bridges death
receptors on cells with caspase-8 and that process starts cell
death. The top authorities, caspase-8 and caspase-10, are
cysteine proteases that are very important in cell apoptosis.
[9].

6.3 Applying Text Analysis Techniques: TF-
IDF Results

As we processed many of the networks, we noted that some-
times the PageRank results were dominated by species like
water and proton. Although these species are clearly very
important in many chemical systems, we realized that hav-
ing just these very common species recognized by our anal-
ysis could be detrimental to the rarer, but crucial species in
a network. This is why we turned to the tf-idf analysis —
to find some way to reduce the elevated effects of extremely
common species on rankings and identify the species that
really differentiate one CRN from others.

The first group of networks we investigated with tf-idf anal-
ysis was a set of metabolic pathways taken from Kegg for
photosynthesis: the citrate cycle, carbon fixation, oxidative
phosphorylation, and glycolysis, among several others. Our
focus was on species with low tf-idf values, which we would
expect to be very common in the set of all networks ana-
lyzed. We found that several of these networks had aldehyde
dehydrogenase and pyruvate synthase with low tf-idf values,
which are both very common in many metabolic pathways.
Although these species can play important roles in the pro-
cesses they are involved in, their presence in a single net-
work given their prevalence in others should be considered
less important for comparative network analysis than, for
example, a species that is only present in a single network.
[23, 6] It is important to note that these are just initial
results, and we would need to do more work to determine
a suitable manner of incorporating tf-idf analysis into our
network structure-based approaches. Nevertheless, it does
seem to be a reasonable avenue to venture down.

6.4 Bacterial vs. Viral Infections
6.4.1 Interferon Regulatory Factors

Interferon regulatory factors (IRFs), as their name suggests,
regulate the production and release of interferons in the hu-
man body. Interferons are primarily released by the host
body when an immune response is triggered. There are
many interferons, some of them can trigger macrophages
and some of them can activate cytotoxic T-cells to kill off
tumors [1], but all of them are antiviral agents [11]. In fact,
they are called interferons because they interfere with virus
replication by inhibiting the replication process or inducing
infected cells to die through apoptosis. Therefore, it would
be reasonable to assume that IRFs would have higher rank
in viral pathways than in bacterial pathways.

Our analysis show that the PageRank’s of IRF3 and IRF9
are consistently very high in viral infections such as measles,
influenza, and hepatitis. At the same time, IRF ranks are
not very high in bacterial infections.

6.4.2 JAK-STAT Signaling Pathway

The JAK-STAT (Janus kinase and Signal Transducer and
Activator of Transcription) signaling pathway is a pathway
that relays messages from the outside of the cell into gene
promoters within the nucleus, which in turn causes DNA
transcription [2]. DNA replication is a vital point in both
healthy cell regulation and proliferation of viruses after they
have infected cells in the host body. Bacteria, on the other
hand, can replicate themselves and do not need to alter host
replication processes.

Our results show that in viral infections, JAK and STAT are
very much disturbed while they are relatively uneventful for
bacterial infections. This also closely matches the results of
the IRF analysis as IRF3 and IRF9 are the two primary reg-
ulatory factors that interact with the JAK-STAT pathway.

6.5 Generic Cancer Results
6.5.1 Fas-Associated Protein with Death Domain

Fas-associated protein with death domain (FADD) is re-
ferred to as an adaptor molecule. Its primary function is
bridging death receptors to caspase-8. This linking forms a
death domain, which in turn forms a death-inducing signal-
ing complex and leads to cell death [9]. Apoptosis is key
because cancer cells do not go through apoptosis and divide
infinitely, which is what causes them to be dangerous. At
the same time, caspase proteins, especially caspase-8, play a
central role in cell apoptosis. Therefore, it stands to reason
that caspase and FADD will have high ranks in analysis of
cancer pathways.

Our analysis shows that caspase-8 and FADD are prominent
in every cancer pathway that we managed to get our hands
on.

6.5.2 MAPK
Mitogen-activated protein kinases (MAPK) is a family of ki-
nases that respond to a wide range of stimuli to the cell such
as osmotic changes, heat changes, and other proteins. The
MAPK family governs very important cell functions, such
as cell mitosis, proliferation, and apoptosis [14]. Again, the
reason that tumors are so dangerous is because tumorous
cells proliferate uncontrollably and do not go through apop-
tosis.

Our analysis shows that all cancer pathways that we found
have multiple MAPK’s near the top of the PageRanks, if
not at the top. They are also very strong authorities for the
HITS algorithm, which is reasonable because they respond
to so much stimuli.

6.5.3 HRAS
The HRAS gene encodes for the production of transform-
ing protein p21, which regulates cell division. They do this
by activating in response to growth factors binding to cell
membrane [27]. Irregular growth factor production is one of
the effects of cancer and p21 activity is consequently raised
in cancer pathways.

Our analysis shows that the HRAS gene plays a prominent
role in several types of cancer, such as melanoma, glioma,
and bladder cancer.



6.5.4 AKT3
AKT3 is a gene that encodes for the production of RAC-
gamma serine/threonine-protein kinase. They respond to
growth factors (similar to p21) and insulin production. These
kinases are involved in cell proliferation and tumorigenesis
[18]. Therefore, one would expect AKT3 to be very promi-
nent in PageRanks.

Although our analysis did show that AKT3 is towards the
top in many cancers, it is not the most prominent in that it
never has top rank. It shows up as fairly high in endometrial
cancer, glioma, and leukemia, but never at the top. How-
ever, they are very high hubs on the HITS algorithm. We
were unable to find appropriate literature explaining this
discrepancy. Therefore, it can either be just a side-effect of
our analysis algorithm coupled with improperly represented
data or it can be a new direction for future research.

As we mentioned, AKT3 also responds to insulin production.
Therefore, we expect that it would have high ranks or be a
very prominent hub for pancreatic cancer. We can only say
that this is partially confirmed because it is near the top,
but not quite there.

6.6 Specific Cancer Results and Possible Dis-
coveries

6.6.1 RB1
Retinoblastoma protein 1 is a tumor suppression gene [25].
Obviously, it is dysfunctional in many cancers. Since it is a
blastoma protein, we expect it to be prominent in skin can-
cers. Through analysis, we show that it is indeed prominent
in melanoma, basal cell carcinoma, and interestingly, small
cell lung cancer. The reason that a blastoma protein inter-
acts so much with lung cancer is unclear to us, so it could
be a direction for future research.

6.6.2 CCND1
Cyclin D1 is a protein encoded by the CCND1 gene. Through
our analysis, we found that it is prominent in thyroid cancer
and prostate cancer, but not in most other cancers. Through
further research, we found that CCND1 is indeed associated
with thyroid cancer [10]. In fact, CCND1 staining is an ef-
fective technique in detecting thyroid cancer. As to prostate
cancer, we also found that CCND1 frequently interacts with
androgen receptors, which are prominent in prostate can-
cer. Finally, research has shown that CCND1 is a target
for colorectal cancer studies [10]. In correspondence with
this, we discovered that CCND1 has very high PageRank in
colorectal cancer.

6.6.3 VEGF
Vascular endothelial growth factor (VEGF) is an important
growth factor for the vascular system and it is especially
important for the development for the pancreas [17]. Since
pancreatic cancer involves uncontrollable division of pancre-
atic cells, VEGF must play a big role in pancreatic cancer.
We confirmed this through both PageRank and HITS anal-
ysis.

6.6.4 Renal-cell Carcinoma and EPAS1

One particularly interesting discovery we made is that EPAS1
is extremely high for both PageRank and hub score in renal-
cell carcinoma. EPAS1 is a gene that encodes for transcrip-
tion factor in oxygen-regulated genes. We were unable to
locate any existing literature that discuss the role of EPAS1
in renal-cell carcinoma. This could mean that EPAS1 is
simply a dead-end for research or that it has not been the
target for research yet and could potentially be a crucial
component to treating or researching renal-cell carcinoma.

7. FUTURE WORK
There are several things we would like to do if we have more
time to work on this project that would improve our re-
search. One important direction to take would be to try to
find more genes and species that are important according
to our analysis but have not been thoroughly researched,
such as EPAS1 for renal-cell carcinoma. These kinds of new
findings are what promotes our work from being a proof of
concept to actually contributing. Of course, if we can get
those results corroborated by actual biology research teams,
it would be ideal.

Another direction we want to go in our analysis is to bet-
ter deal with sub-networks or compartments. Right now we
analyze small compartments individually or ignore them al-
together. However, there can be really subtle changes in
sub-networks that induce large changes in the overall net-
work if integrated properly. Right now our analysis does not
consider that possibility. Also, instead of looking at nodes on
a graph, we can look at individual paths and add in consider-
ations for edge weights. We also have not truly incorporated
self-perturbation, which is when we compare a network to
itself once we add or remove one or more genes/molecules.
This can be especially important when determining the ef-
fects of changes such as inhibitors and enzymes being added
to a reaction. Moreover, we have basic tf-idf analysis, which
is not incorporated into network analysis. Given more time
in the future, we would probably work that into our current
analysis methods.

Finally, we can improve our code’s readability and usability
by creating a graphical user interface and better formatting
our output. If our research is proven to be useful in aiding
future research, we can create a distributable code package
so other people can use our work.
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