
CodeBuddy: Collaborative Programming IDE

Mike Shafer
California Institute of Technology

Computer Science
Class of 2011

mike.shafer2009@gmail.com

Nathan Watson
California Institute of Technology

Computer Science
Class of 2012

nwatson@caltech.edu

ABSTRACT

We are building an open-source networked system designed and

optimized specifically for creating an efficient work atmosphere

for relatively small (2 to 20 people) software development groups

by offering an easy-to-install, easy-to-use collaborative editing

environment.

1. INTRODUCTION
Often, the success of small-scale software development for start-

up technology companies is heavily dependent on the speed with

which the developers in the company can create working

products, and the agility with which the developers can respond to

setbacks, design changes, goal changes, and other similar

obstacles.

In order to overcome such obstacles as efficiently as possible,

communication between developers must be simple, easy, and

fast. Different levels of communication are necessary for different

types of problems; for example, while a quick chat may be

sufficient to clear up small issues in a piece of code, more

substantial consultation is generally necessary when deciding

major design revisions. However, it is equally important that this

variety of communication methods does not hinder the progress of

the project (e.g. by taking a long period of time, or by distracting

from the focus of the project).

Our application is intended to address this issue by offering chat

and messaging tools integrated into a networked, collaborative

programming environment. This offers numerous advantages

over traditional offline IDEs, in particular due to the efficiency of

communication. Aside from in-person consultation, a

programmer can use the same environment for programming,

communicating ideas to fellow developers, and showing new code

for review to peers.

In addition, the program’s design is intended to be as simple to

deploy as possible, such that developers can quickly and easily set

up the system on existing computers without having to invest in

any sort of specialized server hardware. This is particularly

important for targeting small start-ups—start-ups generally may

not have a large amount of money to work with, and the small

number of employees means that any significant setup time results

in a loss of overall productivity for the project. In addition, since

the program is open source, end users who are proficient with

Java can adapt the program to their specific needs as desired.

2. PRIOR WORK
TopCoder's Competition Arena (downloadable from the contest

website, http://www.topcoder.com/tc) is a similar product, but

with a different focus. As in our system, the interface of the

Arena permits users to chat with each other or message each other

privately; however, the Arena is used for different purposes. In

particular, the program is used to run competitive programming

contests in which different users individually write code to solve

set problems, while our system focuses on collaborative editing.

As a result, the quality of communication tools in our system is of

greater importance. Group messaging and chat for different

groups involved in the project can also be added. In addition, the

interface for code editing should allow multiple simultaneous

connections to encourage a more collaborative experience.

(Technical issues with file management may prevent our system

from allowing multiple write-connections at the same time, but a

single write-connection with multiple read-connections, in

combination with the chat interface, should suffice in the project

prototype for the collaborative atmosphere.)

Google Docs is based on a similar idea. It allows for collaborative

editing of many common types of documents and includes a chat

function. Our aim is to have our application embody this concept,

while providing additional functionality in terms of what

documents are supported (basically focusing on a project's

codebase), as well as more advanced permission settings. The

main documents that will be supported will be code, though text

documents, spreadsheets, and presentations can be included.

Through the multi-tier group model, we plan to make it easy for

an admin to delegate to some set of users read/write access to

some documents, while granting other users only read or no

access to these documents.

Naturally, since the project also includes an editor, any code

editors are also “prior work” to some extent. Obviously, our

project extends beyond the task of local code editing, but we can

look to commonly used editors (e.g. Notepad++) for ideas when

looking for useful functionality to include in the project. One

possible feature would be to have plugins for different text editors

which provide synchronization, allowing developers to use their

favorite editors outside of our application to edit the code.

3. CURRENT PROGRESS
We have decided to develop our application in the Java

Programming Language, primarily due to its ubiquity in the

public, its cross-platform capabilities, and its relatively strong

offerings in user interface design and networking libraries. The

client application can be run from any system with version 6 or

later of the Java Runtime Environment (JRE), while the server

application can be run from any system with version 6 or later of

the Java Development Kit (JDK), along with the JavaDB/Derby

database package. Given that Java is still a widespread, common

technology1, we feel that this requirement is unlikely to prevent

adoption of the system.

We manage updates and revisions to the code using the popular

version control system git. Our code base is open source and

publicly available via the website github, at the web address

http://github.com/q12m/145-codebuddy.

Development of our system is split into two code packages, the

server-side application and the client-side application, which will

typically be run on separate computers. It is important to note,

however, that the client and server can be run on the same

computer if desired, in order to prevent the need for a system

dedicated to serving when few computers are available.

3.1 Client Application
The client-side application consists of a graphical user interface

(GUI) developed primarily using Java’s Swing libraries, with

some design support from the drag-and-drop GUI development

tools in the NetBeans IDE. Upon start-up of the application, the

client user is prompted for a username and password, which is

sent to the server for authentication. After a successful login, the

user will be presented with a split window offering four main

parts.

On the top-left, the user is presented with a tree view of the

current active project. This gives a view of all available files for

editing and viewing. Following typical Java development

practices, the system natively allows files to belong to packages.

This view enables on-the-fly creation of new projects, packages,

and files. A slight modification of the standard Swing library

class JTree was required to implement proper leaf and non-leaf

relationships between files and packages. From this view, users

are able to interact with the server as well, opting to store or

retrieve files from the server for their project, and viewing the

complete listing of files that the server has to offer.

On the top-right, the file viewer shows the currently active source

code file for editing and reviewing. The text editor offers basic

editing features, along with several standard features used in other

common programs, such as line numbering, automatic

indentation, automatic parenthesis and bracket pairing, multi-step

undo, and find/replace. The editor allows multiple files to be

opened simultaneously, with a tabbed window for switching

between active files quickly. Each file has the following

components associated with it: a text string denoting the file

name, a JTextPane for displaying the file contents and accepting

edits from end users, and an internal type (specified as either

“leaf” or “non-leaf”) to determine its position in the tree view

described above.

On the bottom-left, there is a tabbed pane with two views:

compiler/tester output and buddy list. The buddy list displays all

users in the project, as well as whether each user is online or not,

in order to quickly and easily display who may be available for

project discussion. The compiler/tester screen shows the results

of any compilation attempts for the project, with a listing of

compiler errors if any exist, as well as the standard out and

standard error streams produced by the program execution.

1 StatOwl, a web-based analytics company, reports that over 70%

of United States Internet users measured in their data have JRE

version 6 installed in their web browser as of April 2011, which

is sufficient to run our client application.

The compiler/tester output screen shows the results of any project

compilation attempt, with a listing of compiler errors if the

attempt fails, or success messages if the attempt succeeds. In

addition, it shows the program’s standard output and standard

error streams to monitor the program’s progress.

In the buddy list view, a listing of all users associated with server

is displayed, showing whether each user is online or not. In future

revisions, usernames will be selectable for group/targeted

messaging.

On the bottom-right, we have the chat window, where any user

currently logged in can write messages and receive feedback from

peers. The chat system is fully operational, using a multithreaded

scheme to allow for the sending and receiving of messages

without disrupting the functioning of the rest of the application.

3.2 Server Application
The server-side application has no graphical interface; in fact, the

application currently does not accept input in any form directly

from the user. Instead, all functionality of the server is performed

through client-server connections.

When the server is started, it first loads up the necessary

dependencies in the Oracle JavaDB/Apache Derby database

system. After successfully preparing the database for client

connections using the Java Database Connectivity (JDBC)

service, the server begins listening on a port for client applications

attempting to establish a connection (we have arbitrarily selected

TCP port 4444 for connections involving user authentication and

chat, and TCP port 4445 for connections involving data transfer,

though this is trivially configurable in case of problems). When a

client connects, the server spawns a thread to handle the

connection, and the first action is authentication: the client sends

a username/password pair, and the server thread determines

whether the pair is valid using a JavaDB containing all valid

users. If the authentication succeeds, the server thread transitions

to the post-login state, where its primary functions are accepting

input chat messages from users and inserting them into the

JavaDB, and servicing chat update requests from clients by doing

time-dependent JavaDB queries to send out recently received

messages to each client. When the user initiates a file request

(whether it is for saving a file to the server or loading a file from

the server), a separate server thread is spawned for handling the

data transmission to prevent large transfers from interrupting the

chat features of the program.

3.2.1 Server Security
Since the server in the CodeBuddy system could be any end user’s

computer and there is often no good way for such a user to ensure

complete security of the computer, the authentication system is

built to be robust against an attacker attempting to compromise

user accounts. To achieve this, no user account passwords are

explicitly stored in the user accounts database; instead, the

JavaDB backend stores salted hashes computed from the bcrypt

algorithm, developed by Provos and Mazieres in 1999 [1]. This

function possesses numerous desirable qualities:

(i) It incorporates salting to defend against rainbow table hash

attacks, where an attacker uses a table of precomputed hashes for

common passwords to find matches in the serverside password

hashes;

(ii) It can be made arbitrarily hard to compute in terms of time

complexity to defend against brute force attacks by increasing a

work factor parameter, unlike alternatives such as MD5 hashing,

which is generally extremely quick to compute;

(iii) There has been no known effective cryptanalysis for

significantly reducing the work to compute hashes in the

algorithm since the function's introduction 12 years ago;

(iv) The function is free from patents and licensing, so it does not

impose any legal restriction on our use.

Using the bcrypt algorithm allows the CodeBuddy system to

authenticate users without opening the possibility of

compromising account passwords if an attacker gains access to the

server computer.

4. CHALLENGES
At various points in the course of the project, we have

encountered some setbacks and issues halting progress; for

documentation, we have listed some of these issues here.

4.1 Managing Connection State
When creating client-server applications, it is necessary to track

the state of a particular client’s connection (in particular, whether

a client is successfully authenticated in the system or not)

accurately on both sides of the connection to avoid error. If this is

not done, the client-server pair can reach a deadlock; for example,

if the client application erroneously progresses past the login

screen to the primary view, the server will refuse to allow the

client to access or submit entries into chat, since authentication is

required; however, the client application will not permit login,

since the program effectively “believes” that it has already done

so, thus deactivating the login GUI. Some problems with this still

linger in our midterm edition of the program; in particular, if a

server-client connection is lost for whatever reason without the

client application restarting (faulty connection on either of the two

systems, server reboot, etc.), the server reverts to pre-

authentication state while the client remains stuck in post-

authentication, until the end user manually restarts the client

application.

4.2 GUI Design
Owing to the varied nature of our system’s offering to client users,

the amount of time spent on crafting the GUI has been larger than

expected. In particular, effectively any new client-side feature

must have a new, custom Swing interface for interaction. Since it

is often the case that the exact details of implementation are not

known until the implementation is complete, we tend to build the

GUI on an as-needed basis, rather than attempting to build up a

“complete toolbox” of GUI types from the start as we originally

planned. The drawback to this is that, each time a new feature is

created, any flaws in the feature must be caught while also

catching flaws with the feature’s new (and thus untested)

interface, increasing the complexity of each new module in the

code.

4.3 Cross-Platform Compatibility
One of the major goals of the project is to offer a platform for

collaborative software development that can operate on any Java-

enabled platform. While this is relatively easy to support on the

server side due to the simplistic interface nature of the server

component, the client code must be carefully constructed to allow

for this usage. Many components have to be considered for a

usable cross-platform experience.

From the perspective of formatting, the CodeBuddy client

interface must be designed for the usage of many different fonts,

since different operating systems very frequently use different sets

of fonts. (For an example, in one earlier revision of the code, the

editor and line numbering components used different fonts of the

same size; on one computer which did not have one of the two

default fonts, a substitute of a different size was automatically

used, causing the line numbers and code to experience a

significant offset, rendering the line numbering system unusable.)

In addition, directory structures on different systems (e.g. Linux

uses “path/to/my.file” while Windows uses “path\to\my.file”; note

the switch between forward and backslashes) must be considered,

since the CodeBuddy system uses the directory/folder to manage

code packages in Java. Without careful coding, the directory

structure would not be managed properly, causing confusing

errors to the end user.

5. DESIRED IMPROVEMENTS
The following is a description of various features that could prove

to be useful in the project to make the system usable to the largest

possible audience. The goals can be naturally categorized into

security-related issues, server-side components, and client-side

components.

5.1 Security Improvements
While the user account passwords are stored only as salted hashes

as described earlier, an attacker with root access to the server can

simply bypass the user account system and retrieve private project

data directly from the JavaDB backend without the need to

compromise any user accounts, since all chat history and project

files are stored unencrypted on the server. Unfortunately,

securing these files is significantly more difficult than securing

passwords. Passwords can be hashed with “one-way functions”

(functions without a known efficient inverse), since the password

itself is not necessary for the program; in contrast, chat history

and files must be recoverable in order to be useful to the end

users. Thus, an encryption scheme on the server must be used.

Since the server must be able to encrypt and decrypt files in order

to serve them to users, an adversary with root access to the server

has complete access to the encryption and decryption algorithms

for the files, so a scheme that obscures the key from even the

server itself is vital. One solution to this is to maintain a separate

global password for file access, but this is undesirable since it

requires every user to memorize two distinct passwords (user

account and file access). Instead, we would like each user

account password to serve as a file access password as well. This

problem is tackled by Kiayias et. al. in their 2007 publication on

the subject of group encryption [2], in which any one of a set of

passwords can be employed as the encryption/decryption key.

Using this system, the files and chat history can be encrypted

using the unhashed passwords from the user accounts. As a

result, having root access to the server would not compromise the

data on the server (although it should be noted that it introduces a

potential weakest-point-of-failure issue, where only a single user

account must be compromised to gain access to the database).

In addition to the serverside encryption, client-server

communications are currently unencrypted, so an attacker could

easily listen on the network and possibly obtain valuable data

intended to be kept secret, including user account passwords, chat

messages, and project files. The standard security package in the

Java programming language offers a set of secure client-server

communications tools using Transport Layer Security (TLS,

formerly Secure Sockets Layer or SSL). In combination with the

above upgrade to password security, this should make our

environment robust against most malicious behavior assuming

good security practices from the end users. There is, of course,

the remaining potential security vulnerability of an attacker

gaining access to the server and then monitoring the functioning

of the program itself, which would effectively enable listening to

all client-server activity, but it is unlikely that any level of

precautionary programming can create an environment free of any

spoofing dangers.

For high-security application of the CodeBuddy system, it may be

worthwhile to implement and deploy the 2009 scrypt algorithm of

Colin Percival [3], since modern computing has taken a strong

turn towards parallel computing (especially with the

advancements in GPU computation). The scrypt algorithm

addresses this issue by not only demanding arbitrarily long

computing times for password hashing and key derivation, but

also requiring a large amount of memory, hampering the

applicability of parallel techniques. However, this would be only

a long-term goal in the security suite of the program, since the

serverside and connection faults are significantly more serious

issues in the current system.

5.2 Server Functionality Improvements
Currently, the server acts as in the capacity of a code dropbox,

where end users can deposit code for their peers to read and edit.

This can be improved for a more hands-on environment

resembling the one offered in the Google Docs web application, in

which documents can be read and edited by multiple users in

parallel. The advantage to this system is its enhanced level of

interactivity—programmers could see their peers’ changes as they

happen, allowing real-time review and suggestions similar to the

frequently used pair programming technique used in the software

engineering industry over a remote connection.

Additionally, the serverside application is currently almost

completely non-interactive, with only error messages and no

administrative tools or on-the-fly configuration. Thus, any TCP

port changes, connection resets, database reconfiguration, or

similar tasks require a full reboot of the server. While the reboot

process is relatively fast and easy, it is still desirable to have some

changes permitted without having to disrupt all client-server

connections in the process, since a server interruption by default

resets all client connections.

Currently, account setup must be done at the code level, instead of

having some user interface for automatic account creation. The

server should accept some sort of account creation request, with

some option for requiring administrator approval for a new

account, since a user account unlocks access to all project files.

5.3 Client Functionality Improvements
One feature that could be desirable is a chat history viewer. It can

often be useful to refer back to previous lines of correspondence

in software development in order to reduce the inefficiency of

repeatedly asking peers similar questions, and in some sense, a

chat history can serve as an informal documentation of the

development process. Chats are already logged on the serverside,

but there is no client-facing interface to access them; to read the

chat history in the current system, a user must read the log output

of the server directly. Ideally, the chat history should be viewable

within the client-side application, with some searchable,

timestamp-sorted window to review past correspondence.

Private messaging is also a useful feature that can be implemented

within the current chat system. This could be applied for cases

where a discussion is not of general interest, but should instead be

kept between a pair of developers who are directly involved with

the subject of the discussion. This promotes a better system of

communication between developers, which is a core function of

the CodeBuddy system.

For users on lossy connections, the client program does not

handle connection failures particularly gracefully, with most

connection issues requiring a restart of the program. This is

because we use no notion of a session key or any other persistent

embodiment of a client-server connection; thus, if the connection

itself is disrupted, it must be restarted. In order to handle these

issues more elegantly, some session key system should be

employed to enable fast reconnects with no need for restarts in

order to prevent the workflow for such users from being

frequently disrupted.

For program testing, there is no way to interact with the program’s

input stream at the moment; thus, any program that expects input

cannot be tested in the program. Two possible solutions exist to

rectify this deficiency: enabling user input through a dialog box

when a program accesses the standard input stream, or enabling

the user to specify a text file to redirect to standard input in order

to allow at least a basic level of interaction. Ideally, both

solutions can be added in the future, since some programs demand

interaction, while others are best left to automated, pre-written

input files for the purposes of streamlining the process of testing

code.

5.3.1 Editor Features
The current code editor lacks some features that often can be

useful in the course of software development. Since the comfort

level of the editor is ultimately the main make-or-break point of

the product, we dedicate a special section of the desired

improvements to it specifically.

IDEs such as Eclipse and NetBeans offer on-the-fly code

compilation, useful for catching bugs and logical gaps as they

happen rather than after the code is written, when the bugs may be

much harder to find. As a result, the CodeBuddy editor would

need to offer comparable functionality to compete with such

IDEs. A possible implementation would be a frequent, regularly-

timed background compilation attempt by the editor that would

report error messages directly as they are found by the compiler.

In addition, IDEs generally offer utilities for code completion and

links to official documentation (Javadoc parsing and viewing, for

example, in Java development). At a minimum, javadoc parsing

for simplistic documentation would be a very valuable asset to

development, minimizing the amount of time spent out-of-

program looking up external documentation sources.

There is an apparent shift in some circles of software development

towards the integration of multiple languages into single projects,

since different programming languages often specialize in

different types of tasks (at Facebook, for example, there are

components written in PHP, C++, Python, and even Erlang). As a

result, restricting the system to only Java development, in the long

run, will prohibit effective targeting for these communities.

Ideally, since there are proprietary programming languages as well

as common usage languages that should be supported, the client

editor should be adapted to be user-extensible for language

support; users should be able to specify editor and compiler

configurations in order to add their own support for the languages

they demand. This, in addition to default support for the most

common languages in modern usage (Java, C++, Python, and the

like), will be a crucial step in maximizing the target audience for

the CodeBuddy development system.

5.4 Alternative Directions
Rather than continuing in the direction of a completely stand-

alone application, it is possible that reusing components from

other projects could bring the CodeBuddy system to a reasonable

level of development more quickly and with a fuller feature set.

For example, integrating the CodeBuddy messaging and backend

with an Eclipse plugin would harness the power of a well-

established IDE while still adding the chat and networked features

as an enhancement to the IDE. This would reduce the amount of

time spent developing features to compete with the IDEs that

many people have already learned to use effectively, focusing

instead on the critical “social coding” components instead.

6. REFERENCES
[1] Mazieres, D. and Provos, N. June 1999. A Future-

Adaptable Password Scheme. USENIX 1999.

http://cvs.openbsd.org/papers/bcrypt-paper.pdf.

[2] Kiayias, A., Tsiounis, Y., and Yung, M. January 2007.

Group Encryption.

[3] Percival, C. May 2009. Stronger Key Derivation via

Sequential Memory-Hard Functions. BSDCan 2009.

http://www.tarsnap.com/scrypt/scrypt.pdf.

http://cvs.openbsd.org/papers/bcrypt-paper.pdf
http://www.tarsnap.com/scrypt/scrypt.pdf

Figure 1. Overview of the high-level components used in the CodeBuddy system. JavaDB/Derby is an external package for

maintaining the data on the backend; all other components are developed for the project.

Figure 2. Primary client application view, showing a three-file active project in the top half, a successful in-program compilation

attempt of the project in the bottom left view, and a test of the chat system in the bottom right view.

Figure 3. Sample run of the server application, showing an annotation of the start-up process (server code compilation,

Derby/JDBC start-up, and network listener start-up) via command line messages upon the first server start.

Figure 4. Schematic overview of the server code package. For each client connection, one ServerThread object is created, managing

its connection state using the ServerProtocol class. The DBManager is a static class, shared among all threads, for interfacing with

the JavaDB system for chats and authentication. TransferThreads are created for each client-to-server or server-to-client file

transfer (downloading or uploading a code file).

Figure 5. Schematic overview of the client code package. Each client starts with the LoginGUI, presenting the option to enter the

program with his user account. Upon successful login, the ClientGUI is loaded, offering chat and editing functionality. The

ProjTreeModel class displays project information; the FileIO class manages reading and writing code files; and the Compiler class

handles in-editor code compilation and execution. All interactions with the server are handled exclusively by the

ConnectionManager, which is configurable for different server setups. Minor classes for supporting project display, editor

functionality, and handling user input are omitted for simplicity.

