
CS 11 python track: lecture 3

n Today: Useful coding idioms

Useful coding idioms
n "Idiom"

n Standard ways of accomplishing a common
task

n Using standard idioms won't make your
code more correct, but
n more concise
n more readable
n better designed (sometimes)

Trivial stuff (1)
n The None type and value:
n Sometimes, need a way to express the notion

of a value which has no significance
n often a placeholder for something which will be

added later, or for an optional argument
n Use None for this

n None is both a value and a type
>>> None
>>> type(None)
<type 'NoneType'>

Trivial stuff (2)

n Can use the return keyword with no argument:
def foo(x):
 print x
 return # no argument!
n Here, not needed; function will return

automatically once it gets to the end
n Can use return with no argument if you want to

exit the function before the end
n return with no argument returns a None value

Trivial stuff (3)

n Can write more than one statement on a line,
separated by semicolons:

>>> a = 1; b = 2
>>> a
1
>>> b
2
n Not recommended; makes code harder to read

Trivial stuff (4)

n Can write one-line conditionals:
if i > 0: break

n Sometimes convenient
n Or one-line loops:
while True: print "hello!"

n Not sure why you'd want to do this

Trivial stuff (5)

n Remember the short-cut operators:
n += -= *= /= etc.

n Use them where possible
n more concise, readable

n Don't write
i = i + 1
n Instead, write
i += 1

Trivial stuff (6)

n Unary minus operator
n Sometimes have a variable a, want to get its

negation
n Use the unary minus operator:
a = 10
b = -a
n Seems simple, but I often see

n b = 0 - a
n b = a * (-1)

Trivial stuff (7)

n The %g formatting operator
n Can use %f for formatting floating point numbers

when printing
n Problem: %f prints lots of trailing zeros:
>>> print "%f" % 3.14
3.140000
n %g is like %f, but suppresses trailing zeros:
>>> print "%g" % 3.14
3.14

Trivial stuff (8)

n The %s formatting operator:
n %s can be used for any data type

n all python data knows how to convert itself to
a string

n Use %s in cases where you may not know
what the type of the data is

print "data: %s" % some_unknown_data

print (1)
n Recall that print always puts a newline after it

prints something
n To suppress this, add a trailing comma:
>>> print "hello"; print "goodbye"
hello
goodbye
>>> print "hello", ; print "goodbye"
hello goodbye
>>>
n N.B. with the comma, print still separates with

a space

print (2)
n To print something without a trailing newline or a

space, need to use the write() method of file
objects:

>>> import sys
>>> sys.stdout.write("hello"); sys.stdout.write("goodbye")
hellogoodbye>>>

print (3)
n To print a blank line, use print with no arguments:
>>> print
n Don't do this:
>>> print ""
n (It's just a waste of effort)

print (4)
n Can print multiple items with print:
>>> a = 10; b = "foobar"; c = [1, 2, 3]
>>> print a, b, c
10 foobar [1, 2, 3]
n print puts a space between each pair of items
n Usually better to use a format string

n get more control over the appearance of the output

The range() function (1)

n The range() function can be called in many
different ways:

range(5) # [0, 1, 2, 3, 4]
range(3, 7) # [3, 4, 5, 6]
range(3, 9, 2) # [3, 5, 7]
range(5, 0, -1) # [5, 4, 3, 2, 1]

The range() function (2)

n range() has at most three arguments:
n starting point of range
n end point (really, 1 past end point of range)
n step size (can be negative)

n range() with one argument
n starting point == 0
n step size == 1

n range()with two arguments
n step size == 1

Type checking (1)
n Often want to check whether an argument to a

function is the correct type
n Several ways to do this (good and bad)
n Always use the type() built-in function
>>> type(10)
<type 'int'>
>>> type("foo")
<type 'str'>

Type checking (2)
n To check if a variable is an integer:
n Bad:
if type(x) == type(10): ...

n Better:
import types
if type(x) == types.IntType: ...

n Best:
if type(x) is int: ...

Type checking (3)
n Many types listed in the types module
n IntType, FloatType, ListType, ...
n Try this:
import types
dir(types)

n (to get a full list)
>>> types.IntType
<type 'int'>

Type checking (4)
n Some type names are now built in to python:
>>> int
<type 'int'>
>>> list
<type 'list'>
>>> tuple
<type 'tuple'>

n So we don't usually need to import types
any more

Type checking (5)
n You could write
if type(x) == int: ...
n but this is preferred:
if type(x) is int: ...
n It looks better
n is is a rarely-used python operator

n equivalent to == for types
n Can negate by writing the "is not" operator:
if type(x) is not int: ...

Type checking (6)
n How to check arguments to a function:

def foo(x): # x should be an int
 if type(x) is not int:
 raise TypeError("bad type!")
 # code for the normal case
 # where x is an int

Note on exception handling (1)
n When handling errors in function arguments,

do not print error messages to the terminal!
n and especially don't call sys.exit(1) !!!

n Instead, raise an exception, and make the
error message an argument to the exception
n most exceptions can take an error message as their

first argument
n Then let the code that called the function

decide what to do with the error (e.g. by
catching the exception or ignoring it)

Note on exception handling (2)
n Reasons for this:

n Error messages printed to the terminal are
only useful for debugging

n In contrast, exceptions can be caught by
other code and possibly recovered from

n Calling sys.exit(1) terminates the entire
program, which is much too drastic!

Note on exception handling (3)
n Can also include other relevant data in the

error message e.g.

raise TypeError("expected int for arg 1, \
got: %s" % arg1)

arg1 is the 1st argument in this case

n Here, the error message reveals why the error
occurred, not just that it occurred

Note on exception handling (4)
n This is bad:

def foo(x): # x should be an int
 if type(x) is not int:
 print >> sys.stderr, "bad type!"
 sys.exit(1)
 # code for the normal case...

n Why?

Note on exception handling (5)
n This is also bad:

def foo(x): # x should be an int
 if type(x) is not int:
 print >> sys.stderr, "bad type!"
 raise TypeError
 # code for the normal case...

n Why?

Note on exception handling (6)
n This is also bad:

def foo(x): # x should be an int
 if type(x) is not int:
 raise TypeError("bad type")
 return
 # code for the normal case...

n Why?

Note on exception handling (7)
n This is good:

def foo(x): # x should be an int
 if type(x) is not int:
 raise TypeError("bad type")
 # code for the normal case...

n Why?

Instance checking (1)
n Instances of classes don't type check usefully:
class Foo: pass
class Bar: pass
f = Foo()
b = Bar()
print type(f) # <type 'instance'>
print type(b) # <type 'instance'>
n Instances of different classes have same "type"
n What do we do to check for particular instance?

Instance checking (2)
n Use the isinstance() function:
class Foo: pass
class Bar: pass
f = Foo()
b = Bar()
print isinstance(f, Foo) # True
print isinstance(f, Bar) # False
print isinstance(b, Foo) # False
print isinstance(b, Bar) # True

Instance checking (3)
n isinstance() and argument checking:

f should be a Foo instance
def myfunction(f):
 if not isinstance(f, Foo):
 raise TypeError("invalid f")
 # code for the normal case...

Instance checking (4)
n Another way to check instances:

f should be a Foo instance
def myfunction(f):
 if f.__class__ is not Foo:
 raise TypeError("invalid f")
 # code for the normal case...
n __class__ is another "magic attribute"
n returns the class of a given instance

Type conversions (1)
n Lots of built-in functions to do type conversions

in python:
>>> float("42")
42.0
>>> float(42)
42.0
>>> int(42.5)
42
>>> int("42")
42

Type conversions (2)
n Converting to strings:
>>> str(1001)
'1001'
>>> str(3.14)
'3.14'
>>> str([1, 2, 3])
'[1, 2, 3]'

Type conversions (3)
n Different way to convert to strings:
>>> `1001` # "back-tick" operator
'1001'
>>> a = 3.14
>>> `a`
'3.14'
>>> `[1, 2, 3]`
'[1, 2, 3]'
n Means the same thing as the str function

Type conversions (4)
n Converting to lists:
>>> list("foobar")
['f', 'o', 'o', 'b', 'a', 'r']
>>> list((1, 2, 3))
[1, 2, 3]
n Converting from list to tuple:
>>> tuple([1, 2, 3])
(1, 2, 3)

The "in" operator (1)

n The in operator is used in two ways:
n 1) Iterating over some kind of sequence
n 2) Testing for membership in a sequence

n Iteration form:
for item in sequence: ...

n Membership testing form:
item in sequence
(returns a boolean value)

The "in" operator (2)

n Iterating over some kind of sequence
for line in some_file: ...
 # line is bound to each
 # successive line in the file "some_file"

for item in [1, 2, 3, 4, 5]: ...
 # item is bound to numbers 1 to 5

for char in "foobar": ...
 # char is bound to 'f', then 'o', ...

The "in" operator (3)

n Testing for membership in a sequence
Test that x is either -1, 0, or 1:
lst = [-1, 0, 1]
x = 0
if x in lst:
 print "x is a valid value!"

n Can test for membership in strings, tuples:
if c in "foobar": ...
if x in (-1, 0, 1): ...

The "in" operator (4)

n Testing for membership in a dictionary:
>>> d = { "foo" : 1, "bar" : 2 }
>>> "foo" in d
True
>>> 1 in d
False

n Iterating through a dictionary:
>>> for key in d: print key
foo
bar

More stuff about lists (1)
n Use lst[-1] to get the last element of a list lst
n Similarly, can use lst[-2] to get second-last

element
n though it won't wrap around if you go past the first

element
n The pop() method on lists:

n lst.pop() will remove the last element of list lst and
return it

n lst.pop(0) will remove the first element of list lst
and return it

n and so on for other values

More stuff about lists (2)
n To copy a list, use an empty slice:
copy_of_lst = lst[:]
n This is a shallow copy

n If lst is a list of lists, the inner lists will not be copied
n Will just get a copy of the reference to the inner list
n Very common source of bugs!

n If you need a deep copy (full copy all the way
down), can use the copy.deepcopy function (in
the copy module)

More stuff about lists (3)
>>> lst = [[1, 2], [3, 4]]
>>> copy_of_lst = lst[:]
>>> lst[0][0] = 10
>>> lst
[[10, 2], [3, 4]]
>>> copy_of_lst
[[10, 2], [3, 4]]
n This is probably not what you expected

More stuff about lists (4)
n Often want to make a list containing many copies

of the same thing
n A shorthand syntax exists for this:
>>> [0] * 10 # or 10 * [0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
n Be careful! This is still a shallow copy!
>>> [[1, 2, 3]] * 2
[[1, 2, 3], [1, 2, 3]]
n Both elements are the same list!

More stuff about lists (5)
n The sum() function
n If a list is just numbers, can sum the list using the
sum() function:

>>> lst = range(10)
>>> lst
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> sum(lst)
45

More stuff about strings (1)
n If you need a string containing the letters from a to

z, use the string module
>>> import string
>>> string.lowercase
'abcdefghijklmnopqrstuvwxyz'
n If you need the count of a particular character in a

string, use string.count or the count method:
string.count("foobar", "o") # 2
"foobar".count("o") # also 2

More stuff about strings (2)
n Comparison operators work on strings
n Uses "lexicographic" (dictionary) order
>>> "foobar" < "foo"
False
>>> "foobar" < "goo"
True

More stuff about strings (3)
n Can "multiply" a string by a number:
>>> "foo" * 3
'foofoofoo'
>>> 4 * "bar"
'barbarbarbar'
>>> 'a' * 20
'aaaaaaaaaaaaaaaaaaaa'
n This is occasionally useful

More stuff about tuples (1)
n Tuples can be used to do an in-place swap

of two variables:
>>> a = 10; b = 42
>>> (a, b) = (b, a)
>>> a
42
>>> b
10

More stuff about tuples (2)
n This can also be written without

parentheses:
>>> a = 10; b = 42
>>> a, b = b, a
>>> a
42
>>> b
10

More stuff about tuples (3)
n Why this works:

n In python, the right-hand side of the =
(assignment) operator is always evaluated
before the left-hand side

n the (b, a) on the right hand side packs the
current versions of b and a into a tuple

n the (a, b) = on the left-hand side unpacks
the two values so that the new a is the old b etc.

n This is called "tuple packing and unpacking"

Random numbers (1)
n To use random numbers, import the random

module; some useful functions include:
random.choice(seq)

n chooses a random element from a sequence seq
(usually a list)

random.shuffle(seq)
n randomizes the order of elements in a sequence seq

(usually a list)
random.sample(seq, k)

n chooses k random elements from seq

Random numbers (2)
n To use random numbers, import the random

module; some useful functions include:
random.randrange(start, stop)

n chooses a random element from the range
[start, stop] (not including the endpoint)

random.randint(start, stop)
n chooses a random element from the range

[start, stop] (including the endpoint)
random.random()

n returns a random float in the range (0, 1)

Conclusion
n I expect you to know these idioms and use them

where appropriate
n ignoring them à lose marks!

n There are lots more idioms than are in this lecture
n If in doubt, use the pydoc program to access

documentation of modules
n Don't write a function from scratch if python already

provides it!
n That's called "reinventing the wheel" and it's very bad

programming practice

Next week
n Finish up discussion of object-oriented

programming in python
n Cover class inheritance
n Also a few more idioms and minor features

