* CS 11 python track: lecture 3

= Today: Useful coding idioms

i Useful coding idioms

= "|[diom"

= Standard ways of accomplishing a common
task

= Using standard idioms won't make your
code more correct, but

= more concise
= more readable
= better designed (sometimes)

* Trivial stuff (1)

= The None type and value:

= Sometimes, need a way to express the notion
of a value which has no significance

= often a placeholder for something which will be
added later, or for an optional argument

= Use None for this
= None is both a value and a type
>>> None
>>> type (None)
<type 'NoneType'>

* Trivial stuff (2)

= Can use the return keyword with no argument:

def foo(x) :
print x

return # no argument!

= Here, not needed; function will return
automatically once it gets to the end

= Can use return with no argument if you want to
exit the function before the end

= return with no argument returns a None value

* Trivial stuff (3)

= Can write more than one statement on a line,
separated by semicolons:

>> a =1; b = 2
>>> a

1

>>> b

2

= Not recommended; makes code harder to read

* Trivial stuff (4)

= Can write one-line conditionals:
if 1 > 0: break

= Sometimes convenient

= Or one-line loops:
while True: print "hello!"

= Not sure why you'd want to do this

* Trivial stuff (5)

= Remember the short-cut operators:
= 4= —-= *= /= etcC.

= Use them where possible
= more concise, readable

= Don't write

i=41i+1

= |nstead, write

i+=1

* Trivial stuff (6)

= Unary minus operator

= Sometimes have a variable a, want to get its
negation

= Use the unary minus operator:

* Trivial stuff (7)

= The %g formatting operator

= Can use %£ for formatting floating point numbers
when printing

= Problem: $£ prints lots of trailing zeros:

>>> print "Sf" $ 3.14

3.140000

= 3gis like $ £, but suppresses trailing zeros:

>>> print "%g" % 3.14

3.14

i Trivial stuff (8)

= The %s formatting operator:

= %s can be used for any data type

= all python data knows how to convert itself to
a string

= Use %s in cases where you may not know
what the type of the data is

print ''data: s some unknown data

* print (1)

= Recall that print always puts a newline after it
prints something

= To suppress this, add a trailing comma:
>>> print "hello"; print "goodbye"
hello

goodbye

>>> print "hello", ; print "goodbye"
hello goodbye

>>>

= N.B. with the comma, print still separates with
a space

* print (2)

= To print something without a trailing newline or a
space, need to use the write () method of file

objects:

>>> import sys
>>> sys.stdout.write("hello"); sys.stdout.write ("goodbye")
hellogoodbye>>>

* print (3)

= Jo print a blank line, use print with no arguments:
>>> print

= Don't do this:

>>> print ""

= (It's just a waste of effort)

* print (4)

= Can print multiple items with print:

>>> a = 10; b = "foobar"; ¢ = [1, 2, 3]

>>> print a, b, c

10 foobar [1, 2, 3]

= print puts a space between each pair of items

= Usually better to use a format string
= get more control over the appearance of the output

* The range () function (1)

= The range () function can be called in many
different ways:

range (5) # [0, 1, 2, 3, 4]
range (3, 7) # [3, 4, 5, 6]
range (3, 9, 2) ¥ [3, 5, 7]
range(5, 0, -1) # [5, 4, 3, 2, 1]

* The range () function (2)

= range () has at most three arguments:

= starting point of range
= end point (really, 1 past end point of range)

= step size (can be negative)

= range () with one argument
= starting point ==
= step size ==

= range () with two arguments
= step size ==

* Type checking (1)

= Often want to check whether an argument to a
function is the correct type

= Several ways to do this (good and bad)
= Always use the type () built-in function
>>> type (10)

<type 'int'>

>>> type("foo")

<type 'str'>

* Type checking (2)

= To check if a variable is an integer:
= Bad:

if type(x) == type(10):

= Better:

import types

if type (x) == types.IntType:
= Best:

if type(x) 1is int.:

* Type checking (3)

= Many types listed in the types module

" IntType, FloatType, ListType, ...
= Try this:
import types
dir (types)
= (to get a full list)
>>> types.IntType
<type 'int'>

* Type checking (4)

= Some type names are now built in to python:
>>> 1int

<type 'int'>

>>> list

<type 'list'>

>>> tuple

<type 'tuple'>

= S0 we don't usually need to import types
any more

* Type checking (5)

= You could write

if type(x) == int:

= but this is preferred:

if type(x) 1is int:

= |t looks better

= is Is a rarely-used python operator
= equivalent to == for types

= Can negate by writing the "is not" operator:
if type(x) is not int:

* Type checking (6)

= How to check arguments to a function:

def foo(x): # x should be an int
if type(x) is not int.:
raise TypeError ("bad type!")
code for the normal case
where x is an int

* Note on exception handling (1)

= When handling errors in function arguments,
do not print error messages to the terminal!

= and especially don't call sys.exit (1) !l

= |nstead, raise an exception, and make the
error message an argument to the exception

= most exceptions can take an error message as their
first argument

= Then let the code that called the function
decide what to do with the error (e.g. by
catching the exception or ignoring it)

* Note on exception handling (2)

= Reasons for this:

= Error messages printed to the terminal are
only useful for debugging

= |n contrast, exceptions can be caught by
other code and possibly recovered from

= Calling sys.exit (1) terminates the entire
program, which is much too drastic!

* Note on exception handling (3)

= Can also include other relevant data in the
error message e.qg.

raise TypeError ("expected int for arg 1, \
got: %s" % argl)

argl is the 1lst argument in this case

= Here, the error message reveals why the error
occurred, not just that it occurred

* Note on exception handling (4)

= This is bad:

def foo(x): # x should be an int
if type(x) 1s not int:
print >> sys.stderr, "bad type!"
sys.exit (1)
code for the normal case...

= Why?

* Note on exception handling (5)

= This is also bad:

def foo(x): # x should be an int
if type(x) 1s not int:
print >> sys.stderr, "bad type!"
raise TypeError
code for the normal case...

= Why?

* Note on exception handling (6)

= This is also bad:

def foo(x): # x should be an int
if type(x) 1s not int:
raise TypeError ("bad type'")
return
code for the normal case...

= Why?

* Note on exception handling (7)

= This is good:

def foo(x): # x should be an int
if type(x) is not int:
raise TypeError ("bad type")
code for the normal case...

= Why?

* Instance checking (1)

= |nstances of classes don't type check usefully:
class Foo: pass

class Bar: pass

f = Foo()

b = Bar()

print type(f) # <type 'instance'>
print type(b) # <type 'instance'>

= |nstances of different classes have same "type"”
= \WWhat do we do to check for particular instance?

* Instance checking (2)

= Use the isinstance () function:

class Foo: pass

class Bar: pass

f = Foo()

b = Bar()

print isinstance(f, Foo) # True
print isinstance(f, Bar) # False
print isinstance (b, Foo) # False
print isinstance (b, Bar) # True

* Instance checking (3)

= isinstance () and argument checking:

£ should be a Foo instance
def myfunction(f) :
if not isinstance(f, Foo):
raise TypeError ("invalid f")
code for the normal case...

* Instance checking (4)

= Another way to check instances:

£ should be a Foo instance
def myfunction (f):
if £f. class 1s not Foo:
raise TypeError ("invalid f")
code for the normal case...

m class IS another "magic attribute”

= returns the class of a given instance

* Type conversions (1)

= | ots of built-in functions to do type conversions
In python:

>>> float("42")
42 .0

>>> float (42)
42 .0

>>> int (42.5)
42

>>> int ("42")
42

* Type conversions (2)

= Converting to strings:
>>> str(1001)

'1001"
>>> str(3.14)
'3.14"

>>> str([1, 2, 3])
‘11, 2, 3]

* Type conversions (3)

= Different way to convert to strings:

>>> "1001° # "back-tick" operator
1001

>>> a = 3.14

>>> "a

'3.14"

>>> “[1, 2, 31

'[1, 2, 3]

= Means the same thing as the str function

* Type conversions (4)

= Converting to lists:

>>> list("foobar")

['f', 'o', 'o', 'b', 'a', 'r']
>>> list((1, 2, 3))

[1, 2, 3]

= Converting from list to tuple:

>>> tuple([1, 2, 3])

(1, 2, 3)

* The "in" operator (1)

= The in operator is used in two ways:
= 1) Iterating over some kind of sequence
= 2) Testing for membership in a sequence

= |teration form:
for item i1n sequence:

= Membership testing form:
item in sequence
(returns a boolean value)

* The "in" operator (2)

= |[terating over some kind of sequence

for line in somg_file:

line is bound to each
successive line in the file "some file"

for item in [1, 2, 3, 4, 5]:
item is bound to numbers 1 to 5

for char in "foobar":
char is bound to 'f', then 'o',

* The "in" operator (3)

= Testing for membership in a sequence
Test that x is either -1, 0, or 1:
st = [-1, O, 1]
x =20
if x in 1lst:

print "x is a wvalid wvalue!"

= Can test for membership in strings, tuples:
if ¢ in "foobar":
if x in (-1, 0, 1):

* The "in" operator (4)

= Testing for membership in a dictionary:

>> d = { "foo" : 1, "bar" : 2 }
>>> "foo" in d

True

>>> 1 in d

False

= |terating through a dictionary:
>>> for key in d: print key
foo

bar

* More stuff about lists (1)

= Use 1st[-1] to get the last element of a list 1st

= Similarly, can use 1st[-2] to get second-last
element

= though it won't wrap around if you go past the first
element

= The pop () method on lists:
1lst.pop () will remove the last element of list 1st and
return it
lst.pop (0) will remove the first element of list 1st
and return it
and so on for other values

* More stuff about lists (2)

= To copy a list, use an empty slice:
copy of 1lst = 1st[:]
= This is a shallow copy

= If 1st is a list of lists, the inner lists will not be copied

= Will just get a copy of the reference to the inner list
= Very common source of bugs!

= |f you need a deep copy (full copy all the way
down), can use the copy.deepcopy function (in
the copy module)

* More stuff about lists (3)

>>> 1st = [[1, 2], [3, 4]]
>>> copy of 1st = 1st[:]
>>> 1st[0] [0] = 10

>>> 1st

[[10, 2], [3, 4]]

>>> copy of 1st

[[10, 2], [3, 4]]

= This is probably not what you expected

* More stuff about lists (4)

= Often want to make a list containing many copies
of the same thing

= A shorthand syntax exists for this:
>>> [0] * 10 # or 10 * [0]
[, 6, o, 60, 0, 0, 0, O, O, O]
= Be careful! This is still a shallow copy!
>>> [[1, 2, 3]] * 2

[[1, 2, 3], [1, 2, 3]1]

= Both elements are the same list!

* More stuff about lists (5)

= The sum () function

= |f alistis just numbers, can sum the list using the
sum () function:

>>> 1lst = range (10)

>>> 1lst

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> sum(lst)

45

* More stuff about strings (1)

= |f you need a string containing the letters from a to
z, use the string module

>>> import string
>>> string.lowercase
'abcdefghijklmnopgqrstuvwxyz'

= |f you need the count of a particular character in a
string, use string.count or the count method:

string.count("foobar", "o") # 2
"foobar" .count("o") # also 2

* More stuff about strings (2)

= Comparison operators work on strings

= Uses "lexicographic" (dictionary) order
>>> "foobar" < "foo"

False
>>> "foobar" < "goo"
True

* More stuff about strings (3)

= Can "multiply" a string by a number:
>>> "foo" * 3

'foofoofoo'

>>> 4 * "bar"

'barbarbarbar'

>>> 'a' * 20
'aaaaaaaaaaaaaaaaaaaa’

= This is occasionally useful

* More stuff about tuples (1)

= Tuples can be used to do an in-place swap
of two variables:

>>> a = 10; b = 42
>>> (a, b) = (b, a)
>>2> a

42

>>> b

10

* More stuff about tuples (2)

= This can also be written without
parentheses:

>>> a = 10; b = 42

>>> a, b =Db, a

>>> a

42

>>> b

10

i More stuff about tuples (3)

= \Why this works:

= |n python, the right-hand side of the =
(assignment) operator is always evaluated

before the left-hand side

= the (b, a) onthe right hand side packs the
current versions of b and a into a tuple

= the (a, b) = on the left-hand side unpacks
the two values so that the new a is the old b etc.

= This is called "tuple packing and unpacking”

* Random numbers (1)

= Jo use random numbers, import the random
module; some useful functions include:

random. choice (seq)

= chooses a random element from a sequence seqgq
(usually a list)

random.shuffle (seq)

= randomizes the order of elements in a sequence seqgq
(usually a list)

random. sample (seq, k)
= chooses k random elements from seq

* Random numbers (2)

= Jo use random numbers, import the random
module; some useful functions include:

random. randrange (start, stop)

= chooses a random element from the range
[start, stop] (not including the endpoint)

random.randint (start, stop)

= chooses a random element from the range
[start, stop] (including the endpoint)

random.random ()
= returns a random float in the range (0, 1)

i Conclusion

= | expect you to know these idioms and use them
where appropriate

= ignoring them - lose marks!

= There are lots more idioms than are in this lecture

= |f in doubt, use the pydoc program to access
documentation of modules

= Don't write a function from scratch if python already
provides it!

= That's called "reinventing the wheel" and it's very bad
programming practice

i Next week

= Finish up discussion of object-oriented
programming in python

= Cover class inheritance
= Also a few more idioms and minor features

