
CS 11 python track: lecture 2
• Today:

• Odds and ends

• Introduction to object-oriented programming

• Exception handling

Odds and ends
• List slice notation

• Multiline strings

• Docstrings

List slices (1)

a = [1, 2, 3, 4, 5]

print a[0] # 1

print a[4] # 5

print a[5] # error!

a[0] = 42

List slices (2)
a = [1, 2, 3, 4, 5]

a[1:3] # [2, 3] (new list)

a[:] # copy of a

a[-1] # last element of a

a[:-1] # all but last

a[1:] # all but first

List slices (3)

a = [1, 2, 3, 4, 5]

a[1:3] # [2, 3] (new list)

a[1:3] = [20, 30]

print a

[1, 20, 30, 4, 5]

List slices (4)

a = [1, 2, 3, 4, 5]

a[1:3] = [20, 30, 40]

print a

[1, 20, 30, 40, 4, 5]

Multiline strings
s = "this is a string"

s2 = 'this is too'

s3 = "so 'is' this"

sl = """this is a

multiline string."""

sl2 = '''this is also a

 multiline string'''

Docstrings (1)
• Multiline strings most useful for

documentation strings aka "docstrings":
def foo(x):

 """Comment stating the purpose of

 the function 'foo'. """

 # code...

• Can retrieve as foo.__doc__

Docstrings (2)
• Use docstrings:

• in functions/methods, to explain

• what function does

• what arguments mean

• what return value represents

• in classes, to describe purpose of class

• at beginning of module

• Don’t use comments where docstrings are preferred

Introduction to OOP

• OOP = Object-Oriented Programming

• OOP is very simple in python
• but also powerful

• What is an object?
• data structure, and

• functions (methods) that operate on it

OOP terminology
• class -- a template for building objects

• instance -- an object created from the
template (an instance of the class)

• method -- a function that is part of the object
and acts on instances directly

• constructor -- special "method" that creates
new instances of a particular class

Defining a class

class Thingy:

 """This class stores an arbitrary object."""

 def __init__(self, value):

 """Initialize a Thingy."""

 self.value = value

 def showme(self):

 """Print this object to stdout."""

 print "value = %s" % self.value

constructor

method

Using a class (1)
t = Thingy(10) # calls __init__ method

t.showme() # prints "value = 10"

• t is an instance of class Thingy

• showme is a method of class Thingy

• __init__ is the constructor method of class Thingy

• when a Thingy is created, the __init__ method is
called

• Methods starting and ending with __ are "special" methods

Using a class (2)

print t.value # prints "10"

• value is a field of class Thingy

t.value = 20 # change the field value

print t.value # prints "20"

More fun stuff
• Can write showme a different way:

def __repr__(self):

 return str(self.value)

• Now can do:

 print t # prints "10"

 print "thingy: %s" % t # prints "thingy: 10"

• __repr__ converts object to string

"Special" methods

• All start and end with __ (two underscores)

• Most are used to emulate functionality of built-
in types in user-defined classes

• e.g. operator overloading
• __add__, __sub__, __mult__, ...

• see python docs for more information

Exception handling

• What do we do when something goes wrong in code?

• exit program (too drastic)

• return an integer error code (clutters code)

• Exception handling is a cleaner way to deal with this

• Errors "raise" an exception

• Other code can "catch" an exception and deal with it

try/raise/except (1)

try:
 a = 1 / 0
 # this raises ZeroDivisionError
except ZeroDivisionError:
 # catch and handle the exception
 print "divide by zero"
 a = -1 # lame!

try/raise/except (2)

try:

 # code that raises IOError or
 # IndexError
except IOError:
 # catch and handle IOErrors
except IndexError:
 # catch and handle IndexErrors

try/raise/except (3)

try:
 a = 1 / 0
 # this raises ZeroDivisionError
except: # no exception specified
 # catches ANY exception
 print "something bad happened"
 # Don’t do this!

Backtraces

• Uncaught exceptions give rise to a stack
backtrace:
python bogus.py

Traceback (most recent call last):

 file "bogus.py", line 5, in ?

 foo()

 file "bogus.py", line 2, in foo

 a = 1 / 0

 ZeroDivisionError: integer division or modulo by
zero

• Backtrace is better than catch-all exception handler

Exceptions are classes

class SomeException:

 def __init__(self, msg=None):

 self.msg = msg

 def __repr__(self):

 return str(self.msg)

• This exception class can be called with or without a
single argument, which represents a (hopefully)
meaningful error message

Raising exceptions (1)

def some_function():

 if something_bad_happens():

 # SomeException leaves function

 raise SomeException("bad!")

 else:

 # do the normal thing

Raising exceptions (2)

def some_other_function():

 try:

 some_function()

 except SomeException, e:

 # e gets the exception that was caught

 print e.msg

Summing up

• Use classes where possible

• Use exceptions to deal with error situations

• Use docstrings for documentation

• In two weeks: more OOP (inheritance)

