
Caltech CS 1: Fall 2012 

CS 1 
Introduction to Computer 

Programming 

Lecture 24:  December 5, 2012 

Advanced topics, part 2 



Caltech CS 1: Fall 2012 

Last time 

 Advanced topics, lecture 1 
•  recursion 
•  first-class functions 
• lambda expressions 
•  higher-order functions 

•  map, filter, reduce 
 
 



Caltech CS 1: Fall 2012 

Today 

 Advanced topics, lecture 2 
•  command-line arguments 
•  list comprehensions 
•  iterators 
•  generators 

 Course wrap-up 
 
 



Caltech CS 1: Fall 2012 

Admin notes 

  This is the last lecture!  
•  or maybe ? 

  The final will be ready by Friday 
•  due Friday, December 14th at 9 AM 

 
 



Caltech CS 1: Fall 2012 

Admin notes 

  There is a course feedback form online 
  I'd really appreciate it if you'd fill it out! 
  Also, there is the "official" course feedback form 

(TQFR) which I would also ask you fill out 
  Reason for two forms: mine is far more detailed! 
 



Caltech CS 1: Fall 2012 

Command-line arguments 

  Most of the time, we've been running programs 
in one of two ways: 
1.  importing a module directly into WingIDE and 

running it there 
2.  running it from the terminal command line 

  However, this is a very limited way of running 
programs 

  Sometimes we need to pass information to the 
program at the moment we run it 



Caltech CS 1: Fall 2012 

Command-line arguments 

  Example: We are writing a program called 
capitalize.py that will  
•  take a text file 
•  create a new file which has the same contents as the 

original file, but capitalized 
  How do we write this program so that it works 

from the command line? 



Caltech CS 1: Fall 2012 

Command-line arguments 

  Given what we know now, we would probably 
write it using raw_input to get the name of the 
original file and the name of the file we want to 
write, e.g. 

% python capitalize.py 
Name of input file: infile.txt 
Name of output file: outfile.txt 

  and the program would read from the input file 
infile.txt and write capitalized text to the 
output file outfile.txt 



Caltech CS 1: Fall 2012 

Command-line arguments 

  An alternative (and simpler) approach is to make 
the names of the input and output file into 
command-line arguments: 

% python capitalize.py infile.txt outfile.txt 

  and the program will work the same way, without 
the calls to raw_input 

 



Caltech CS 1: Fall 2012 

Command-line arguments 
 
% python capitalize.py infile.txt outfile.txt 

  This entire line (which runs python on the 
program file capitalize.py) is called a 
command-line 
•  i.e. a line containing a command 

  The command-line is a feature of the 
terminal's command interpreter, not of 
Python 

  However, Python can access the command-
line from inside a Python program 

 

command-line 



Caltech CS 1: Fall 2012 

Command-line arguments 

% python capitalize.py infile.txt outfile.txt 

  The command part can be viewed as just 
python or Python and the program that 
Python runs (capitalize.py) 
•  we will consider the command to be the latter    

(python capitalize.py) 

command 



Caltech CS 1: Fall 2012 

Command-line arguments 
% python capitalize.py infile.txt outfile.txt 

  Anything that comes after the command are 
the command-line arguments, i.e. the 
arguments to the command 
•  analogous to the arguments to a function, where 

the command is like a function call given to the 
Unix terminal 

  Here, the command-line arguments are: 
•  infile.txt 
•  outfile.txt 

 

command-line arguments 



Caltech CS 1: Fall 2012 

Command-line arguments 
% python capitalize.py infile.txt outfile.txt 

  Writing programs to use command-line 
arguments is usually simpler than using 
raw_input if all you need to do is give 
some initial information to the program 
•  here, names of files to work on 

  But how do we actually use command-line 
arguments from inside the program? 

 



Caltech CS 1: Fall 2012 

Command-line arguments 

  Inside our program, we would have: 
import sys 
if len(sys.argv) != 3: 
    print >> sys.stderr, \ 
     'Not enough arguments!' 
    sys.exit(1) 
infile = open(sys.argv[1], 'r') 
outfile = open(sys.argv[2], 'w') 
# Then do the rest of the program 

 



Caltech CS 1: Fall 2012 

Command-line arguments 

  The sys module contains functions to help 
us work with the external "system" that a 
Python program runs on 

  We need to understand: 
•  sys.argv  (command-line argument list) 
•  sys.exit   (function to exit the program) 

 



Caltech CS 1: Fall 2012 

sys.exit 

  sys.exit is basically the same as the quit 
function; it exits the program immediately 
•  could just as well use quit here 

  Normally, we give it an integer argument 
indicating whether or not the program exited 
successfully 
•  0 means "everything went well" 
•  a nonzero value means "an error happened" 

  Here, we give it the value 1, meaning that an 
error happened 

 



Caltech CS 1: Fall 2012 

sys.exit 

  The value we pass as an argument to 
sys.exit is "the return value of the entire 
program" 

  Normally, we don't care about this, but the 
operating system can use this in various 
ways 

 



Caltech CS 1: Fall 2012 

sys.argv 

  sys.argv is where the command-line 
arguments are stored every time a Python 
program runs 

  It is a list of strings 
  Each command-line argument (separated by 

spaces) is a separate string in the list 
  The first item in the list is the name of the 

program 
  The rest are the command-line arguments 
 



Caltech CS 1: Fall 2012 

sys.argv 

  When we run this Python program from the 
command-line: 

% python capitalize.py infile.txt outfile.txt 

  Then sys.argv in the program is: 
['capitalize.py', 'infile.txt', 'outfile.txt'] 

  sys.argv[0] is the name of the program 
(capitalize.py, without python) 
•  normally don't need this 

  Rest of sys.argv are the command-line 
arguments, which we do need 



Caltech CS 1: Fall 2012 

sys.argv 

  Usually, we only need sys.argv[0] if 
something goes wrong 

  It's good practice to print a usage message 
informing the user that they called the 
program incorrectly 
•  e.g. didn't specify the input or output filenames 

  as well as how to call the program correctly 
  This code might look like this (next slide) 



Caltech CS 1: Fall 2012 

import sys 

usage = 'usage: python %s input_file output_file' 

if len(sys.argv) != 3: 

    print >> sys.stderr, usage % sys.argv[0] 

    sys.exit(1) 

infile = open(sys.argv[1], 'r') 

outfile = open(sys.argv[2], 'w') 

# rest of program... 

 

usage message 

sys.argv 



Caltech CS 1: Fall 2012 

sys.argv 

  If an incorrect number of command-line 
arguments are given, you will see this: 

 

% python capitalize.py 

usage: python capitalize.py input_file output_file 

 
  This tells you how the program is supposed to 

be used, so you can use it correctly next time 



Caltech CS 1: Fall 2012 

New topic! 



Caltech CS 1: Fall 2012 

List comprehensions 

  Python has a very general way of creating lists 
that have particular properties called list 
comprehensions 

  The idea: you declare what kind of values you 
want your list to contain, and Python makes it  
for you 
 



Caltech CS 1: Fall 2012 

List comprehensions 

  List comprehensions have three components: 
•  The values from which our list elements are built 
•  The values we don't want in our list 
•  How we combine the good values to create the list 

elements 
  This is easier to show than to describe 

•  so let's see some examples! 
 



Caltech CS 1: Fall 2012 

List comprehensions 

  Simple list comprehension: 
>>> [2 * x for x in range(5)] 
[0, 2, 4, 6, 8] 
  A list comprehension is some Python code (with 

a particular structure) inside list brackets 
  Here, we have only two of the three 

components: 
•  where the values come from (for x in range(5)) 
•  how to compute the list elements (2 * x) 



Caltech CS 1: Fall 2012 

List comprehensions 

[2 * x for x in range(5)] 

  The values come from here 
  We are looking at values x that are taken from 

the list range(5) (i.e. [0, 1, 2, 3, 4]) 
  So the value of x is 0, then 1, then 2, then 3, 

then 4 



Caltech CS 1: Fall 2012 

List comprehensions 

[2 * x for x in range(5)] 

  The list elements are computed from x using the 
expression 2 * x  

  So the value of 2 * x is 0, then 2, then 4, then 
6, then 8 

  These values are collected together to give the 
final list: [0, 2, 4, 6, 8] 



Caltech CS 1: Fall 2012 

List comprehensions 

  List comprehensions thus provide a very 
compact way of creating lists with particular 
properties 

  We can also specify which of the values we 
don't want in the list by including an if 
statement inside the list comprehension 



Caltech CS 1: Fall 2012 

List comprehensions 

>>> [2 * x for x in range(5) if x % 2 == 0] 
[0, 4, 8] 

  This says: 
•  take all elements x from the list range(5) 
•  but only if x % 2 == 0  i.e. x is even  i.e. x is 

either 0, 2, or 4 
•  and use those x values to compute 2 * x 

  So the result is [0, 4, 8] 



Caltech CS 1: Fall 2012 

List comprehensions 

  Another way to look at list comprehensions: 
[2 * x for x in range(5) if x % 2 == 0] 

  means the same thing as: 
result = [] 
for x in range(5): 
    if x % 2 == 0: 
        result.append(2 * x) 

  where result will have the final list value 



Caltech CS 1: Fall 2012 

List comprehensions 

  You can have more than one "value generator" 
in a list comprehension: 

>>> [(x, y) for x in range(3) \ 

            for y in [True, False]] 

[(0, True), (0, False),  

 (1, True), (1, False),  

 (2, True), (2, False)] 

 



Caltech CS 1: Fall 2012 

More examples 

  Create a list of all the pairs (x, y) where x 
and y are positive and x + y == 5 

>>> [(x, y) for x in range(6) \ 

            for y in range(6) \ 

            if x + y == 5] 

[(0, 5), (1, 4), (2, 3), (3, 2), (4, 1), (5, 0)] 



Caltech CS 1: Fall 2012 

More examples 

  Create a list of all numbers between 2 and 100 
which are not divisible by 2, 3, 5, or 7: 

>>> [n for n in range(2, 101) \ 

       if n % 2 != 0 \ 

       if n % 3 != 0 \ 

       if n % 5 != 0 \ 

       if n % 7 != 0] 

[11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 

 59, 61, 67, 71, 73, 79, 83, 89, 97] 

  (all prime numbers between 8 and 100) 



Caltech CS 1: Fall 2012 

map and filter 

  Note that list comprehensions can also be used 
instead of map and filter: 

>>> map(lambda x: x ** 2, [1, 2, 3, 4, 5]) 

[1, 4, 9, 16, 25] 

>>> [x ** 2 for x in [1, 2, 3, 4, 5]] 

[1, 4, 9, 16, 25] 

>>> filter(lambda x: x % 2 == 0, [1, 3, 4, 6, 7]) 

[4, 6] 

>>> [x for x in [1, 3, 4, 6, 7] if x % 2 == 0] 

[4, 6] 



Caltech CS 1: Fall 2012 

List comprehensions 

  List comprehensions are very convenient, but 
not an essential feature of Python 

  They don't allow you to do anything you couldn't 
do before 

  They often do allow you to create a list with 
particular values much more concisely than you 
could have done it before 

  Use them as you see fit 



Caltech CS 1: Fall 2012 

Interlude 

  A classic clip! 
 
 



Caltech CS 1: Fall 2012 

Iterators 

  We've seen that a lot of data types can be 
looped over inside a for loop: 
•  lists (by list elements) 
•  strings (by characters) 
•  dictionaries (by keys) 
•  files (by lines in the file) 

  What if we have our own special data type that 
we want to loop over? 

  What if we want to loop over a standard data 
type in a non-standard way? 

 



Caltech CS 1: Fall 2012 

Iterators 

  What we need is a way of saying "this is how  
we can loop over this data type in this 
particular way" 

  In Python, we handle this problem by creating 
an object called an iterator 
•  i.e. "something that we can loop over in a for loop" 

  Many data types already have iterators built-in 
to them, but we can define new ones as well 



Caltech CS 1: Fall 2012 

Iterators 

  An iterator is a special kind of Python object 
that can be used in a for loop: 

 
for <item> in <iterator>: 
    # do something with <item> 



Caltech CS 1: Fall 2012 

Iterators 

  Any Python object can be an iterator if it 
contains two methods: 

  __iter__  
•  This returns the object itself 

  next 
•  This returns the "next thing" in the object 
•  If there is no "next thing", this raises the 
StopIteration exception 

  Any object that contains these two methods can 
be looped over in a for loop 



Caltech CS 1: Fall 2012 

__iter__ 

  The __iter__ method may seem useless, and 
it is for iterator objects 

  However, non-iterator objects (those that do not 
have a next method) can also define 
__iter__ to return an iterator object that 
iterates over the non-iterator object 

  Example: a list object has the __iter__ 
method but not the next method 

  Calling the __iter__ method on the list returns 
an iterator over the list elements 



Caltech CS 1: Fall 2012 

__iter__ and next 
>>> lst = [1, 2, 3] 

>>> i = lst.__iter__() 

>>> i 

<listiterator object at 0x100496a90> 

>>> i.next() 

1 

>>> i.next() 

2 

>>> i.next() 

3 

>>> i.next() 

StopIteration 



Caltech CS 1: Fall 2012 

__iter__ and next 
  Iterators explain why so many different data 

structures (lists, strings, dictionaries, files) can 
work correctly in for loops 

  When you see this code: 
for item in object: ... 
  What Python is really doing is using 
object.__iter__() instead of object to 
get an iterator over the object and calling the 
next method on the iterator to get item every 
time the loop body is executed 



Caltech CS 1: Fall 2012 

Examples of iterators 

  Looping over a list starts at the beginning of a 
list and continues to the end 

  What if we want to start at the end of a list and 
continue back to the beginning? 

  We don't want to alter the list, so using the 
reverse method is out 

  Let's define an iterator class to do this for us 



Caltech CS 1: Fall 2012 

Examples of iterators 
class ReverseListIterator: 

    def __init__(self, lst): 

        if type(lst) is not list: 

            raise TypeError('need a list argument') 

        self.lst = lst[:]   # copy the list 

    def __iter__(self): 

        return self 

    def next(self): 

        if self.lst == []:  # no more items 

            raise StopIteration 

        return self.lst.pop() 



Caltech CS 1: Fall 2012 

Examples of iterators 

  The ReverseListIterator class stores a 
copy of a list 

  Every time it's asked for a new element (when 
the next method is called) it pops an element 
off the end of the list using the pop method on 
lists 

  If there are no more elements in the list, the 
StopIteration exception is raised 

  Let's see how we would use this 



Caltech CS 1: Fall 2012 

Examples of iterators 
>>> li = ReverseListIterator([1, 2, 3, 4, 5]) 

>>> for i in li: 

...     print i 

5 

4 

3 

2 

1 

  We have just extended what the for loop can 
do to handle our new iterator class 
•  cool! 



Caltech CS 1: Fall 2012 

Examples of iterators 

  In fact, the ReverseListIterator class is 
useful enough that Python provides a built-in 
function called reversed which creates an 
iterator just like this: 

>>> for i in reversed([1, 2, 3, 4, 5]): 

...     print i 

5 

4 

3 

2 

1 



Caltech CS 1: Fall 2012 

Examples of iterators 

  Another example: iterating over a file character-
by-character 

  Recall: using a file in a for loop iterates over 
the file line-by-line 
•  usually what we want, but not always 

  Let's define a file iterator class to allow us to 
iterate over files by characters 



Caltech CS 1: Fall 2012 

Examples of iterators 
class FileCharIterator: 

    def __init__(self, file): 

        self.file = file 

        self.current = [] 

    def __iter__(self): 

        return self 

    def next(self): 

        if self.current == []: 

            nextline = self.file.readline() 

            if nextline == '': 

                raise StopIteration 

            self.current = list(nextline) 

        return self.current.pop(0) # return first char 



Caltech CS 1: Fall 2012 

Examples of iterators 

  The __init__ method stores a file object in 
the iterator and stores a "current line" field 
called current that is initially the empty list 
•  current will hold the current line of the file, as a list 

of characters 
  The __iter__ method just returns the iterator 

object itself 
  The next method is where all the action is 

•  so let's look at it again 



Caltech CS 1: Fall 2012 

Examples of iterators 
class FileCharIterator: 

    # ... stuff left out ... 

    def next(self): 

        if self.current == []:  # no more characters 

            # Try to get another line from the file. 

            nextline = self.file.readline() 

            if nextline == '':   # end of file 

                raise StopIteration 

            # Convert the line to a list of characters 

            self.current = list(nextline) 

        # Remove (pop) the first character from current 

        # and return it. 

        return self.current.pop(0) 



Caltech CS 1: Fall 2012 

Examples of iterators 

  Using the new iterator: 
 
f = open('foo.txt', 'r') 
fi = FileCharIterator(f) 
for char in fi: 
    print char 
# Prints every character of the file,  
# on a separate line 



Caltech CS 1: Fall 2012 

Last topic! 



Caltech CS 1: Fall 2012 

Generators 

  We take it for granted that when we return from 
a function, we are done with that call to the 
function 

  But what if it was possible to return from a 
function "temporarily", so we could "pick up 
where we left off" later? 

  Python has this feature: it's called a generator 
•  because it "generates" values for us 



Caltech CS 1: Fall 2012 

Generators and yield 

  The idea: instead of using return to return 
from a function, use the new keyword yield 

  When you yield a result, you are saying "here 
is the result you wanted, but I'm ready to keep 
going whenever you want more results" 

  A generator is basically an iterator which is 
constructed automatically from a function 



Caltech CS 1: Fall 2012 

Generator example 

def fib(): 
    (a, b) = (0, 1) 
    while True: 
        yield a 
        (a, b) = (b, a + b) 

  This is a function that returns a generator object 
(because of the yield statement) 

  The generator will generate all fibonacci 
numbers (0, 1, 1, 2, 3, 5, 8, 13, ...) in order 
•  forever! 

 



Caltech CS 1: Fall 2012 

Generator example 

  Let's see how we can use it: 
>>> gen = fib() 
>>> gen 
<generator object at 0x5c6a30> 
>>> gen.next() 
0 
>>> gen.next() 
1 
>>> gen.next() 
1 
>>> gen.next() 
2 

 
 



Caltech CS 1: Fall 2012 

Generator example 

  Let's print the first ten fibonacci numbers: 
>>> gen = fib() 
>>> for i, e in enumerate(gen): 
...     if i >= 10: 
...         break 
...     print e 
0 
1 
1 
2 
3 
5 ... 

 
 



Caltech CS 1: Fall 2012 

Generator example 2 

  Let's create a generator which will generate all 
prime numbers 

  A prime number is an integer >= 2 which is only 
divisible by itself or 1 

  We'll use the generator to print out all primes < 
100 

 
 



Caltech CS 1: Fall 2012 

Generator example 2 
def primes(): 

    prev = []    # previously-seen primes 

    i = 2 

    while True:  # infinite loop! 

        prime = True  # assume i is prime 

        for p in prev: 

            if i % p == 0:  # i is not a prime 

                 prime = False 

                 break 

        if prime: 

            prev.append(i) 

            yield i 

        i += 1  # try the next integer 

 
 



Caltech CS 1: Fall 2012 

Generator example 2 

  Using the primes generator to generate all 
primes below 100: 

>>> gen = primes() 
>>> for p in gen: 
...     if p >= 100: 
...         break 
...     print p 

 
 



Caltech CS 1: Fall 2012 

Generator example 2 

  This prints: 
2 
3 
5 
7 
11 
13 
17 
19 
23 
29 
... 

 



Caltech CS 1: Fall 2012 

Python 

  Iterators and generators are two of the coolest 
features of Python 

  Python has many more features than I could 
cover in this course 

  The online documentation is excellent!  Get 
familiar with it! 

 



Caltech CS 1: Fall 2012 

Python 3.x 

  The version of Python we have been using is 
version 2.7.3 

  The most recent version is version 3.3.0 
  Versions 3.0 and up have quite a few (mostly 

non-essential) differences from the version 
we have been using 

  Everything you need to know about this is on 
the Python website: www.python.org 

 



Caltech CS 1: Fall 2012 

Wrapping up 



Caltech CS 1: Fall 2012 

Where to go from here 

  There are several courses you can take after 
CS 1 

  CS 2 will teach more about algorithms, data 
structures, and give you practice with larger 
programming projects and application areas 
•  using Java (I think)  

  CS 11 will teach you specific languages 
•  C, C++, Java, Erlang, Ocaml, Haskell, whatever! 
•  taught by Donnie and me 

 



Caltech CS 1: Fall 2012 

Where to go from here 

  CS 4 will be a more abstract/theoretical course 
focussing on the big ideas of computer 
programming 

  It will use the Scheme and Ocaml languages 
and will be significantly harder than CS 1 
•  good for hard-core programmer types and/or current 

or future CS majors 
  It will be awesome! 

•  Oh yeah, I'm teaching that too  
 



Caltech CS 1: Fall 2012 

Finally... 

  I hope you enjoyed the course! 
•  and learned a lot! 

  If you've done well, 
  if you really like programming, 
  if you think you'd like teaching... 

 



Caltech CS 1: Fall 2012 

I want YOU to be a CS 1 TA! 

 



Caltech CS 1: Fall 2012 

CS 1 TAs 

 
 
  If you're interested, email me 
  No rush, but no later than Spring term 
  Lots of work 

•  but good money (~$30/hour currently) 
•  and GREAT teaching experience! 

  Probably 3-4 open slots at least 



Caltech CS 1: Fall 2012 

And... 

 
 
  Thanks for letting me teach you! 
  One final clip... 



Caltech CS 1: Fall 2012 

[End] 



Caltech CS 1: Fall 2012 

Code summary 
class ReverseListIterator: 

    def __init__(self, lst): 

        if type(lst) is not list: 

            raise TypeError('need a list argument') 

        self.lst = lst[:]   # copy the list 

    def __iter__(self): 

        return self 

    def next(self): 

        if self.lst == []:  # no more items 

            raise StopIteration 

        return self.lst.pop() 



Caltech CS 1: Fall 2012 

Code summary 
class FileCharIterator: 

    # ... stuff left out ... 

    def next(self): 

        if self.current == []:  # no more characters 

            # Try to get another line from the file. 

            nextline = self.file.readline() 

            if nextline == '':   # end of file 

                raise StopIteration 

            # Convert the line to a list of characters 

            self.current = list(nextline) 

        # Remove the first character from current and 

        # return it. 

        return self.current.pop(0) 



Caltech CS 1: Fall 2012 

Code summary 

def fib(): 
    (a, b) = (0, 1) 
    while True: 
        yield a 
        (a, b) = (b, a + b) 



Caltech CS 1: Fall 2012 

Code summary 
def primes(): 

    prev = []  # previously-seen primes 

    i = 2 

    while True: 

        prime = True  # assume i is prime 

        for p in prev: 

            if i % p == 0:  # i is not a prime 

                 prime = False 

                 break 

        if prime: 

            prev.append(i) 

            yield i 

        i += 1  # try the next integer 

 
 


