
CS11 – Java

Fall 2014-2015
Lecture 7

Today’s Topics

!  All about Java Threads
!  Some Lab 7 tips

Java Threading Recap

!  A program can use multiple threads to do
several things at once
"  A thread can have local (non-shared) resources
"  Threads can share resources, too!

!  Interactions with shared resources must be
performed atomically
"  Not doing this produces spurious results
"  Shared resources must be locked carefully to

avoid deadlock and other similar problems

Why Multithreading?

!  Sometimes threads perform “slow” operations
"  e.g. communication over a network
"  Can perform other tasks, while slow operation takes place

in a separate thread
!  Threads also provide a powerful conceptual model

"  Some programs are simply easier to understand, when
implemented with several threads to perform various tasks

!  Threads impose a (usually small) performance cost
"  Single processor has to switch between several threads, to

give each one a time-slice to run in
"  Even with multiple processors, have synchronization costs

This Week’s Lab

!  Make last week’s web-crawler faster!
"  Lots of time spent sending HTTP request and

waiting for response
!  Create multiple crawler threads

"  Each will analyze one web page at a time
"  Provides dramatic improvement in performance

!  …as long as there aren’t too many crawler threads!

!  Need a “URL Pool”
"  Crawlers get “next URL to crawl” from the pool
"  Each crawler thread puts new URLs into the pool

The URL Pool

!  URL Pool is a shared resource
"  Crawler threads must interact atomically with it
"  Sometimes, no “next URL” will be available!

!  How can a thread perform atomic interactions
with an object?

!  How can a thread passively wait for a
condition to become true?

Atomic Interactions

!  In Java, every object has a monitor
"  A monitor is a simple mutex (“mutual exclusion”) lock
"  An object can be locked by at most one thread at a time

!  Use synchronized block to lock an object
synchronized (sharedObj) {
 ... // Perform atomic operations on shared object
}

"  Thread blocks (suspends) until it acquires sharedObj’s
monitor

"  Thread resumes when it acquires sharedObj’s monitor
"  At end of synchronized block, thread automatically

releases sharedObj’s monitor

Example: A Thread-Safe FIFO

!  Producer-consumer problem:
"  One thread is producing data
"  Another thread is consuming the data
"  How to interface the two threads?

!  A simple solution: build a thread-safe FIFO
"  “First In, First Out” queue
"  Both producer and consumer use the FIFO

!  Producer puts data into the FIFO
!  Consumer gets data out of the FIFO

"  Interaction with FIFO must be synchronized!

A Simple FIFO

!  Build a FIFO that uses a LinkedList for storage
!  Give our FIFO a maximum size.

"  If producer is faster than consumer, don’t want FIFO to
grow out of control!

!  Our FIFO class:
public class FIFO {
 private int maxSize;
 private LinkedList items;

 public FIFO(int size) {
 maxSize = size;
 items = new LinkedList();
 }
 ...

Putting Items into the FIFO

!  If there is space, add object to end of FIFO
and return true.

!  Otherwise, do nothing and return false.
!  FIFO Code:

public boolean put(Object obj) {
 boolean added = false;
 if (items.size() < maxSize) {
 items.addLast(obj);
 added = true;
 }
 return added;
}

Getting Items from the FIFO

!  If an item is available, remove it and return it
!  If no item is available, return null
!  FIFO Code:

public Object get() {
 Object item = null;
 if (items.size() > 0)
 item = items.removeFirst();

 return item;
} Removing an item from an empty list

causes an exception to be thrown.

FIFO Threading Issues

!  This FIFO code isn’t thread-safe!
"  LinkedList isn’t thread-safe, so getting and putting at

same time can produce spurious results.
"  Bigger issues arise with multiple producers, or multiple

consumers.
"  Example: two consumer threads, one item in queue

public Object get() {
 Object item = null;
 if (items.size() > 0)
 item = items.removeFirst();

 return item;
}

Both consumers might see items.size()
return 1, then try to grab the one item.
The FIFO would throw an exception!

Synchronizing FIFO Operations

!  FIFO can use synchronized blocks to ensure thread-safety

public Object get() {
 Object item = null;
 synchronized (items) {
 // This thread has exclusive
 // access to items now.
 if (items.size() > 0)
 item = items.removeFirst();
 }
 return item;
}

!  Must also make put(Object) method thread-safe!
"  Enclose operations on items within a synchronized block

Another FIFO Issue

!  What about when there’s nothing to get?
"  Could write a loop that checks regularly

(“polls” or “spins”)
// Keep trying until we get something!
do {
 item = myFifo.get();
} while (item == null);

!  Polling in a tight loop is very costly!
"  Polling operations almost invariably use way too

many CPU resources to be a good idea
"  Always try to find another solution to polling

Passive Waiting

!  Would like threads to wait passively
"  Put a thread to sleep, then wake it up later
"  Accomplished with wait() and notify() methods
"  Defined on java.lang.Object (see API docs)

!  Once a thread has synchronized on an object:
"  (i.e. the thread holds that object’s monitor)
"  The thread can call wait() on that object to suspend itself
"  The thread releases that object’s monitor, then suspends.

!  Can only call wait() on an object if you have
actually synchronized on it.
"  If not, IllegalMonitorStateException is thrown!

Wake Up!

!  Another thread can wake up the suspended thread
"  First, the thread must lock the same object as before

!  (It synchronizes on the object.)
"  Then the thread can call notify() or notifyAll() to

wake up any threads that are suspended on that object.
!  notify() wakes up one thread waiting on that object
!  notifyAll() wakes all threads waiting on that object

"  If no thread is waiting when notify() or notifyAll() is
called, nothing happens. (It’s a no-op.)

!  Can only call notify()/notifyAll() on objects
that the thread has already locked…

Thread Notification

!  When a thread is notified, it immediately tries
to relock the object it called wait() on
"  It called wait() inside a synchronized block…
"  But the thread that called notify() still holds the

lock.
!  When the notifying thread releases the lock,

one of the notified threads gets the lock next.
"  The JVM arbitrarily picks one!
"  The notified thread gets to resume execution with

exclusive access to the locked object.

How To Use wait() and notify()

!  Common scenario:
"  One thread can’t proceed until some condition is true.
"  The thread can call wait() to go to sleep.
"  FIFO: get() method can wait() if no items

!  Another thread changes the state:
"  It knows that the condition is now true!
"  It calls notify() or notifyAll() to wake up any

suspended threads
"  FIFO: put() method can notify() when it adds

something

How to wait()

!  A waiting thread shouldn’t assume that the condition
is true when it wakes up.
"  If multiple threads are waiting on the same object, and
notifyAll() was called, another thread may have gotten
to the object first.

"  Can also use wait() with a timeout
!  “Wait to be notified, or until this amount of time passes.”

"  Also, spurious wakeups can occur
!  A thread resumes without being notified (!!!)
!  Can occur depending on how JVM was implemented

!  Always use wait() in a loop that checks the condition

Back to the FIFO

!  Now we can use wait() in our FIFO:
public Object get() {
 Object item = null;
 synchronized (items) {
 // This thread has exclusive access to items

 // Keep waiting until an item is available
 while (items.size() == 0)
 items.wait();

 item = items.removeFirst()
 }
 return item;
}

Always wait inside of
a loop that checks the
condition!

Waking the Consumer

!  Now put() must notify waiting consumers
public boolean put(Object obj) {
 boolean added = false;

 synchronized (items) {
 if (items.size() < maxSize) {
 items.addLast(obj);
 added = true;

 // Added something, so wake up a consumer.
 items.notify();
 }
 }
 return added;
}

Call notify() on same
object that other threads
are waiting on.

One More Issue…

!  If producer is faster than consumer, it has no
way to wait until there’s room in the FIFO!
"  The consumer can passively wait, but…
"  Producer has to poll if there’s no room in the FIFO

!  This is a simple FIFO. ☺
"  In fact, it’s really simple – it has other issues too!
"  Example: using a single lock for both gets & puts

!  See java.util.concurrent classes for
really sophisticated queues, pools, etc.
"  New in Java 1.5! Written by Doug Lea.

Synchronizing on this

!  An object can synchronize on itself
"  Particularly useful when an object manages several

shared resources
"  Manually locking multiple resources can lead to

deadlock, if you aren’t careful…
!  FIFO could do this instead of locking items :

public Object get() {
 Object item = null;
 // Lock my own monitor.
 synchronized (this) {
 while (items.size() == 0)
 wait(); // Call wait() on myself.

 item = items.removeFirst();
 }
 return item;
}

Synchronized Methods

!  Synchronizing on this is very common…
!  Java provides an alternate syntax:

public synchronized Object get() {
 while (items.size() == 0)
 wait();

 return items.removeFirst();
}

"  this is locked at beginning of method body
"  this is unlocked at end of method body
"  Can call wait() or notify() inside method

!  Putting synchronized on all methods is an easy
way to make a class thread-safe
"  (Don’t need to put synchronized on constructors)

Threads and Performance

!  Synchronization incurs a cost
"  Locking and unlocking the mutex takes time
"  Don’t use synchronization unless it’s necessary
"  Bad examples:

!  java.util.Vector, java.util.Hashtable
!  Both classes synchronize every single method!
!  Don’t use them in single-threaded programs (or at all?)

!  Threads should lock shared resources for as
little time as possible
"  Keep thread-contention to a minimum

Lab 7 Tips

!  Need a pool of URLDepthPair objects
"  This pool is shared among all web-crawler threads
"  Crawler threads get URLs from pool, add new ones to pool

!  Internals:
"  One LinkedList to keep track of URLs to crawl
"  Another LinkedList for URLs you have seen

!  Methods:
"  Get the next URLDepthPair to process

!  Suspend the thread if nothing is immediately available
"  Add a URLDepthPair to the pool

!  Always add the URL to “seen” list
!  Only add to “pending” list if depth is less than max depth
!  If added to “pending” list, notify any suspended threads

Most Challenging Problem

!  When are we done crawling? How do we know?
"  When all crawler threads are waiting, we’re done!
"  (Pending queue had better be empty, too!)

!  URL Pool should keep a count of waiting threads
"  Easy to implement:

!  In constructor, initialize count of waiting threads to 0
!  Increment count before calling wait()
!  Decrement count after wait() returns

!  Main thread can periodically check this count
"  It knows how many crawler threads were requested
"  It needs to print out the results at the end, anyways.
"  Make sure to synchronize access to this shared state!

Crawler Threads

!  Create a CrawlerTask that implements Runnable
"  CrawlerTask needs a reference to the URLPool

!  Hint: pass URLPool to the CrawlerTask constructor
"  run() method contains a loop:

!  Get a URL from the pool.
!  Download the web page, looking for new URLs.
!  Stick new URLs back into the pool.
!  Go back to the beginning!

"  Process each URL in a helper method (or several helpers)
!  Hint: reuse your code from last week’s crawler.

"  Handle exceptions gracefully!
!  If a problem occurs with one URL, go on to the next one!

Web-Crawler Main Method

!  main() drives everything from start to finish
"  Get initial URL, max depth, number of threads

from command-line parameters
"  Create a URL pool, add the initial URL to pool
"  Create and start the requested number of threads

!  Could put them into an array, to clean them up later, but
really not necessary for this lab

"  Check pool every 0.1 to 1 second for completion
"  When finished, print URLs in the pool’s “seen” list
"  System.exit(0);

Using Threads

!  Create a class that implements Runnable
"  Implement run() method to do your work

!  Pass an instance of your class to Thread
constructor

CrawlerTask c = new CrawlerTask(pool);
Thread t = new Thread(c);

!  Call start() on the new thread object
t.start();

!  The thread will automatically call your object’s run()
method

!  Thread terminates when your run() method ends

Gentle Polling

!  Use Thread.sleep() to pause between checks
"  sleep() is a static method
"  Can throw InterruptedException!
"  (About the nicest way one can poll…)

!  Something like this:
while (pool.getWaitCount() != numThreads) {
 try {
 Thread.sleep(100); // 0.1 second
 } catch (InterruptedException ie) {
 System.out.println("Caught unexpected " +
 "InterruptedException, ignoring...");
 }
}

The Big Picture

Lab7 class

CrawlerTask

CrawlerTask

CrawlerTask

URLPool

.
.
.

Threads

main() method
 - Set up pool
 - Start threads
 - Monitor pool
 - Print results
 - Shut down

pending
seen

waitCount

Pool Synchronization

!  URLPool contains several shared resources!
"  Pending list, seen list, count of waiting threads, …

!  URLPool object can synchronize on itself.
"  Avoids thread-safety/deadlock issues, etc.

!  URLPool should take care of threading
operations internally.
"  Crawler tasks shouldn’t have to manually

synchronize/wait/notify on pool to use it.
"  Want to encapsulate threading behavior, too!

Java Threading References

!  Concurrent Programming in Java (2nd ed.)
"  Doug Lea

!  Effective Java
"  Joshua Bloch

