CS11 — Java

Fall 2014-2015
Lecture 7



Today’s Topics

All about Java Threads
Some Lab 7 tips



Java Threading Recap

A program can use multiple threads to do
several things at once

o A thread can have local (non-shared) resources
o Threads can share resources, too!

Interactions with shared resources must be
performed atomically
o Not doing this produces spurious results

o Shared resources must be locked carefully to
avoid deadlock and other similar problems




Why Multithreading?

Sometimes threads perform “slow” operations
0 e.g. communication over a network

o Can perform other tasks, while slow operation takes place
In a separate thread

Threads also provide a powerful conceptual model

o Some programs are simply easier to understand, when
implemented with several threads to perform various tasks

Threads impose a (usually small) performance cost

o Single processor has to switch between several threads, to
give each one a time-slice to run in

o Even with multiple processors, have synchronization costs



This Week’s Lab

Make last week’s web-crawler faster!

o Lots of time spent sending HTTP request and
waiting for response

Create multiple crawler threads
o Each will analyze one web page at a time

o Provides dramatic improvement in performance
...as long as there aren’t too many crawler threads!

Need a “URL Pool”
o Crawlers get “next URL to crawl” from the pool
o Each crawler thread puts new URLs into the pool



The URL Pool

URL Pool is a shared resource
o Crawler threads must interact atomically with it
o Sometimes, no “next URL” will be available!

How can a thread perform atomic interactions
with an object?

How can a thread passively wait for a
condition to become true?



Atomic Interactions

In Java, every object has a monitor
o A monitor is a simple mutex (“mutual exclusion”) lock
o An object can be locked by at most one thread at a time

Use synchronized block to lock an object

synchronized (sharedObj) {
. // Perform atomic operations on shared object

}
o Thread blocks (suspends) until it acquires sharedObj's

monitor
o Thread resumes when it acquires sharedObsj’s monitor

o At end of synchronized block, thread automatically
releases sharedObj’s monitor



Example: A Thread-Sate FIFO

Producer-consumer problem:

o One thread is producing data

o Another thread is consuming the data
o How to interface the two threads?

A simple solution: build a thread-safe FIFO
a “First In, First Out” queue

o Both producer and consumer use the FIFO
Producer puts data into the FIFO
Consumer gets data out of the FIFO

o Interaction with FIFO must be synchronized!



A Simple FIFO

Build a FIFO that uses a LinkedList for storage

Give our FIFO a maximum size.

o If producer is faster than consumer, don’'t want FIFO to
grow out of control!

Our FIFO class:

public class FIFO {
private int maxSize;
private LinkedList items;

public FIFO(int size) {
maxSize = size;
items = new LinkedList() ;



Putting Items into the FIFO

If there is space, add object to end of FIFO
and return true.

Otherwise, do nothing and return false.
FIFO Code:

public boolean put (Object obj) {
boolean added = false;
if (items.size() < maxSize) {
items.addLast (obj) ;
added = true;
}

return added;



Getting Items from the FIFO

f an item is available, remove it and return it
f no item is available, return null

-IFO Code:

public Object get() {
Object item = null;

if (items.size() > 0)

item = items.removeFirst();

return item;

) Removing an item from an empty list
causes an exception to be thrown.




FIFO Threading Issues

This FIFO code isn’t thread-safe!

o LinkedList isn’'t thread-safe, so getting and putting at
same time can produce spurious results.

o Bigger issues arise with multiple producers, or multiple
consumers.

o Example: two consumer threads, one item in queue
public Object get() {
Object item = null;
if (items.size() > 0)
item = items.removeFirst();

Both consumers might see items.size()
return 1, then try to grab the one item.
The FIFO would throw an exception!

return item;




Synchronizing FIFO Operations

FIFO can use synchronized blocks to ensure thread-safety

public Object get() {
Object item = null;
synchronized (items) {
// This thread has exclusive

// access to items now.
if (items.size() > 0)

item = items.removeFirst () ;

return item;

}

Must also make put (Object) method thread-safe!
o Enclose operations on items within a synchronized block



Another FIFO Issue

What about when there’s nothing to get?

o Could write a loop that checks regularly
(“polls™ or “spins™)
// Keep trying until we get something!
do {
item = myFifo.get (),
} while (item == null);

Polling in a tight loop is very costly!

o Polling operations almost invariably use way too
many CPU resources to be a good idea

o Always try to find another solution to polling



Passive Waiting

Would like threads to wait passively

o Put a thread to sleep, then wake it up later

o Accomplished with wait () and notify () methods
o Defined on java.lang.Object (see API docs)

Once a thread has synchronized on an object:

a (i.e. the thread holds that object’s monitor)

o The thread can call wait () on that object to suspend itself
o The thread releases that object’'s monitor, then suspends.
Can only call wait () on an object if you have
actually synchronized on it.

o Ifnot, IllegalMonitorStateException is thrown!




Wake Up!

Another thread can wake up the suspended thread
o First, the thread must lock the same object as before
(It synchronizes on the object.)

o Then the thread can call notify () ornotifyAll () to
wake up any threads that are suspended on that object.

notify () wakes up one thread waiting on that object
notifyAll () wakes all threads waiting on that object
o If no thread is waiting when notify () or notifyAll () is
called, nothing happens. (It's a no-op.)
Can only call notify () /notifyAll () on objects
that the thread has already locked...



Thread Notification

When a thread is notified, it immediately tries
to relock the object it called wait () on

o It called wait () inside a synchronized block...

o But the thread that called notify () still holds the
lock.

When the notifying thread releases the lock,
one of the notified threads gets the lock next.
o The JVM arbitrarily picks one!

o The notified thread gets to resume execution with
exclusive access to the locked object.



How To Usewait () and notify ()

Common scenario:

o One thread can’t proceed until some condition is true.
o The thread can call wait () to go to sleep.

o FIFO: get () method can wait () if no items

Another thread changes the state:
a It knows that the condition is now true!

0 It calls notify () or notifyAll () to wake up any
suspended threads

o FIFO: put () method can notify () when it adds
something



How to wait ()

A waiting thread shouldn’t assume that the condition
Is true when it wakes up.

o If multiple threads are waiting on the same object, and
notifyAll () was called, another thread may have gotten
to the object first.

o Can also use wait () with a timeout
“Wait to be notified, or until this amount of time passes.”

o Also, spurious wakeups can occur
A thread resumes without being notified (!!!)
Can occur depending on how JVM was implemented

Always use wait() in a loop that checks the condition




Back to the FIFO

Now we can use wait () in our FIFO:

public Object get() {
Object item = null;
synchronized (items) {
// This thread has exclusive access to items

// Keep waiting until an item is available

while (items.size() == 0) | a\yays wait inside of
items.wait(); <: a loop that checks the
condition!

item = items.removeFirst ()

}

return item;



Waking the Consumer

Now put () must notify waiting consumers

public boolean put (Object obj) {
boolean added = false;

synchronized (items) {
if (items.size() < maxSize) {
items.addLast (obj) ;
added = true;

// Added something, so wake up a consumer.
items.notify () ;

} <i Call notify () on same
} object that other threads

return added; are waiting on.




One More Issue...

If producer is faster than consumer, it has no
way to wait until there’s room in the FIFO!

o The consumer can passively wait, but...
o Producer has to poll if there’s no room in the FIFO

This is a simple FIFO. ©
o In fact, it's really simple — it has other issues too!
o Example: using a single lock for both gets & puts

See java.util.concurrent classes for
really sophisticated queues, pools, etc.
o New in Java 1.53! Written by Doug Lea.




Synchronizing on this

An object can synchronize on itself

o Particularly useful when an object manages several
shared resources

o Manually locking multiple resources can lead to
deadlock, if you aren’t careful...

FIFO could do this instead of locking items :
public Object get() {
Object item = null;
// Lock my own monitor.
synchronized (this) ({
while (items.size() == 0)
wait(); // Call wait() on myself.

item = items.removeFirst() ;

}

return item;



Synchronized Methods

Synchronizing on this is very common...

Java provides an alternate syntax:
public synchronized Object get () {
while (items.size() == 0)
wait () ;

return items.removeFirst() ;

}
o this is locked at beginning of method body

o this is unlocked at end of method body

o Cancallwait () or notify () inside method

Putting synchronized on all methods is an easy
way to make a class thread-safe

o (Don’t need to put synchronized on constructors)



Threads and Performance

Synchronization incurs a cost
o Locking and unlocking the mutex takes time
o Don’t use synchronization unless it's necessary

o Bad examples:

java.util.Vector, java.util.Hashtable

Both classes synchronize every single method!

Don’t use them in single-threaded programs (or at all?)
Threads should lock shared resources for as
little time as possible

o Keep thread-contention to a minimum



Lab 7 Tips

Need a pool of URLDepthPair objects
o This pool is shared among all web-crawler threads
o Crawler threads get URLs from pool, add new ones to pool

Internals:
o One LinkedList to keep track of URLs to crawl
o Another LinkedList for URLs you have seen

Methods:
o Get the next URLDepthPair to process
Suspend the thread if nothing is immediately available
o Add a URLDepthPair to the pool
Always add the URL to “seen” list
Only add to “pending” list if depth is less than max depth
If added to “pending” list, notify any suspended threads



Most Challenging Problem

When are we done crawling? How do we know?
o When all crawler threads are waiting, we're done!
o (Pending queue had better be empty, too!)
URL Pool should keep a count of waiting threads
o Easy to implement:
In constructor, initialize count of waiting threads to O
Increment count before calling wait ()
Decrement count after wait () returns

Main thread can periodically check this count

o It knows how many crawler threads were requested

o It needs to print out the results at the end, anyways.

o Make sure to synchronize access to this shared state!



Crawler Threads

Create a CrawlerTask that implements Runnable
0 CrawlerTask needs a reference to the URLPool
Hint: pass URLPool to the CrawlerTask constructor
o run () method contains a loop:
Get a URL from the pool.
Download the web page, looking for new URLs.
Stick new URLs back into the pool.
Go back to the beginning!
o Process each URL in a helper method (or several helpers)
Hint: reuse your code from last week’s crawler.
o Handle exceptions gracefully!
If a problem occurs with one URL, go on to the next one!



Web-Crawler Main Method

main () drives everything from start to finish

a Get initial URL, max depth, number of threads
from command-line parameters

o Create a URL pool, add the initial URL to pool

o Create and start the requested number of threads

Could put them into an array, to clean them up later, but
really not necessary for this lab

o Check pool every 0.1 to 1 second for completion
2 When finished, print URLs in the pool’'s “seen” list
0 System.exit(0);



Using Threads

Create a class that implements Runnable
o Implement run () method to do your work

Pass an instance of your class to Thread
constructor

CrawlerTask ¢ = new CrawlerTask (pool) ;
Thread t = new Thread(c);

Call start () on the new thread object
t.start () ;

The thread will automatically call your object’s run ()
method

Thread terminates when your run () method ends



Gentle Polling

Use Thread.sleep () to pause between checks
0 sleep () Is a static method

o Can throw InterruptedException!

o (About the nicest way one can poll...)

Something like this:
while (pool.getWaitCount() !'= numThreads) ({
try {
Thread.sleep(100); // 0.1 second

} catch (InterruptedException ie) {
System.out.println ("Caught unexpected " +

"InterruptedException, ignoring...");



‘ The Big Picture

Threads

main() method
- Set up pool
- Start threads

- Monitor pool :
- Print results ;

- Shut down




Pool Synchronization

URLPool contains several shared resources!
o Pending list, seen list, count of waiting threads, ...
URLPool object can synchronize on itself.

o Avoids thread-safety/deadlock issues, etc.
URLPool should take care of threading
operations internally.

o Crawler tasks shouldn’t have to manually
synchronize/wait/notify on pool to use it.

o Want to encapsulate threading behavior, too!




Java Threading References

Concurrent Programming in Java (2"9 ed.)
o Doug Lea

Effective Java
o Joshua Bloch




