
CS11 – Java

Fall 2014-2015
Lecture 6

Today’s Topics

!  Lab 6: Web Crawler!
!  Java Sockets API
!  String operations

This Week’s Assignment

!  Build a simple web-crawler
"  Connect to a web server
"  Send an HTTP request to the server
"  Get the HTTP response from the server
"  Process it to find more URLs
"  Repeat!

Networking Protocols

!  Two main Internet communication protocols
!  TCP/IP (or just TCP)

"  Transmission Control Protocol/Internet Protocol
"  Stream-based, reliable, ordered communication

!  UDP
"  User Datagram Protocol
"  Message (“datagram”) based, unreliable, unordered

communication
!  Java supports both in java.net package

"  TCP: java.net.Socket
"  UDP: java.net.DatagramSocket
"  Others too… e.g. SSL (javax.net.ssl package)

Talking to Web Servers

!  HTTP: Hypertext Transfer Protocol
"  Text-based protocol
"  Request/response interactions
"  Uses TCP/IP protocol

!  Connection parameters:
"  IP address, or hostname (resolved to IP address)
"  Port (in range 1..65535; 1..1024 are reserved)

!  Different kinds of servers listen on specific ports
"  E-mail servers typically listen to port 25
"  SSH servers typically listen to port 22
"  Web servers typically listen to port 80

Web-Page URLs

!  URL = Uniform Resource Locator
!  Specifies:

"  Communications protocol
"  Server’s hostname or IP address
"  Port (optional; each protocol has own default)
"  Path to document or resource (also optional)

!  Example: http://www.cms.caltech.edu/people
"  Protocol is HTTP
"  Server’s hostname is www.cms.caltech.edu
"  Port defaults to 80 for HTTP servers
"  Resource on server is /people

Requesting a Web Page

!  Connect to the specified host and port
"  Use java.net.Socket since it’s TCP

!  Send an HTTP request for the desired page
!  Receive HTTP response containing the page

"  …or a response saying there was an error!
!  Close the socket used to connect

"  Don’t hold on to networking resources
!  Do stuff with the retrieved document

"  In our case, process it to find more URLs

Connecting to the Server

!  Create a new Socket for each connection
"  Specify hostname/IP address as a String
"  Specify port number

webServer = "www.cms.caltech.edu";
webPort = 80;
Socket sock = new Socket(webServer, webPort);

!  Problem:
"  What if there’s no server by that name?
"  What if server isn’t listening on that port?

!  Socket constructor reports connection errors
by throwing exceptions

Interacting with Web Servers

!  If socket can’t connect to remote server, an
exception will be thrown

!  Connection may fail during interaction, too
!  Your web-crawler will need to catch the

exceptions that could be thrown
"  Handling them can be simple – print a message

indicating the error, then go on to next URL
!  Use the Java API documentation to see what

exceptions to handle in your program

Communicating Over the Socket

!  Once socket is open, can get an InputStream and
an OutputStream from it
"  OutputStream is for sending to remote host
"  InputStream is for receiving from remote host

!  Problem:
"  InputStream and OutputStream not suited to text data!
"  Are designed for byte streams
"  “Read/write a byte,” or “read/write an array of bytes”
"  Won’t handle text character-sets
"  Converting byte arrays to/from String objects is a big pain

Readers and Writers

!  Reader, Writer classes are for character streams
!  Can wrap a Reader around an InputStream

"  Reader consumes bytes from InputStream; produces
characters or strings

!  Can wrap a Writer around an OutputStream
"  Writer takes characters; feeds bytes to OutputStream

!  …perfect for HTTP interactions!

!  Several different subclasses of Reader, Writer
"  (Same with InputStream and OutputStream)

Sending HTTP Requests

!  HTTP request must take form:
GET /people HTTP/1.18
Host: www.cms.caltech.edu8
Connection: close8
8

"  The blank line is required!!! ☺
"  First line contains document/resource to fetch

!  For the root document of a website, must specify / as path
"  Second line specifies web server hostname

!  (Multiple virtual hosts can be served from one physical server)
"  Third line tells server to close connection when response is

completely sent

Example Request-Sending Code

Socket sock = new Socket(webHost, webPort);
sock.setSoTimeout(3000); // Time-out after 3 seconds

OutputStream os = sock.getOutputStream();

// true tells PrintWriter to flush after every output
PrintWriter writer = new PrintWriter(os, true);

writer.println("GET " + docPath + " HTTP/1.1");
writer.println("Host: " + webHost);
writer.println("Connection: close");
writer.println();

// Request is sent! Server will start responding now.

Receiving the HTTP Response

!  Use BufferedReader to read lines of text from
socket input
"  BufferedReader requires input from another Reader
"  Use InputStreamReader to convert socket’s input-

stream into a reader
InputStream is = sock.getInputStream();
InputStreamReader isr = new InputStreamReader(is);
BufferedReader br = new BufferedReader(isr);

!  Can call br.readLine() until it returns null
"  This is why we said “Connection: close” in the request

Example Response-Receiving Code

InputStream is = sock.getInputStream();
InputStreamReader isr = new InputStreamReader(is);
BufferedReader br = new BufferedReader(isr);

while (true) {
 String line = br.readLine();
 if (line == null)
 break; // Done reading document!

 // Do something with this line of text.
 System.out.println(line);
}

Exception Handling in the Web Crawler

!  Make sure your exception handling has the right
level of granularity.

!  Operations for crawling a web page:
1.  Connect to remote server with a socket
2.  Send the HTTP request
3.  Read back the HTTP response
4.  Parse URLs from the response text

!  All of these steps could conceivably throw an
exception.

"  URL parsing may or may not, depending on your
implementation

Exception Handling: A Simple Approach

!  Operations for crawling a particular web page:
1.  Connect to remote server with a socket
2.  Send the HTTP request
3.  Read back the HTTP response
4.  Parse URLs from the response text

!  A simple approach:
"  Wrap each step with its own try/catch block.

!  Does this approach make sense?
"  If any step fails, cannot perform any subsequent steps!

!  An exception from steps 1-3 should terminate the
entire operation of crawling the web page

"  (If a URL doesn’t parse, just go on to next URL in page…)

Smarter Exception Handling

!  Exceptions should be handled on a “per unit of
work” basis

!  Example:
"  A good “unit of work” for the web crawler is attempting to

process a particular web page
!  A better approach:

"  Put code for processing a single URL into a function
"  Within the function, operations might throw exceptions

!  The function just lets any exceptions propagate out
!  Any exception will terminate the entire unit of work

"  The function’s caller wraps the call with a try/catch block

Searching Strings

!  String class provides many useful features
!  Find the index of a character or string:

"  int indexOf(int ch)
"  int indexOf(int ch, int fromIndex)
"  int indexOf(String str)
"  int indexOf(String str, int fromIndex)
"  Also, lastIndexOf(...) for searching from end

!  These functions return -1 if value is not found
"  Valid indexes are 0 to length() – 1

Manipulating Strings

!  Get a substring of a String
"  String substring(int beginIndex)
"  String substring(int beginIndex,
 int endIndex)

!  Change the case of a string:
"  String toLowerCase()
"  String toUpperCase()

!  Trim whitespace off a string:
"  String trim()

!  Note: Java strings are immutable
"  These operations return a new String object

Example: Searching for Words
// TODO: Get the word and line from somewhere...
String word = "after";
String line = ...;

// Search for our word in the current line.
int idx = 0;
while (true) {
 idx = line.indexOf(word, idx);
 if (idx == -1) // No more copies of word in this line
 break;

 // Record that we found another copy of the word.
 count++;

 // Skip past this copy of the word, so that next
 // iteration of the loop doesn't see it again!
 idx += word.length();
}

Searching for Links

!  Links are trickier to find
Caltech

1)  Search for: a href="
2)  Once you find that, look for the closing "
3)  Text between the double-quotes is the URL

!  Make sure to handle case where multiple
URLs appear in the same line

"  After pulling out the current URL text, advance
the index past it, and look for next URL.

"  Don’t need to handle links that wrap to next line

Tracking the Details

!  Create a simple URLDepthPair class to track the
depth of each URL that is found

!  First URL is at depth 0
!  When processing a page, its URLs get created with

that page’s depth + 1
"  Put new URLDepthPair objects into a list!
"  After a page is processed, get the next URL to process

from your list.
!  Take a second command-line argument specifying

max depth to crawl a website to
!  This strategy doesn’t handle cycles very cleverly…

Lists of URL-Depth Pairs

!  A LinkedList is good for this task
LinkedList<URLDepthPair> pendingURLs =
 new LinkedList<URLDepthPair>();

!  When you find a new URL:
pendingURLs.add(new URLDepthPair(linkText, childDepth));

!  When you need another URL to process:
while (!pendingURLs.isEmpty()) {
 nextURLPair = pendingURLs.removeFirst();
 ... // Process this URL-depth pair
}

!  When a URL is processed:
"  Use another LinkedList to store processed URLs

!  At end of program, print out all processed URLs

Plan for Reuse!

!  Make URL-processing code reusable
"  Encapsulate it in a method or a few methods
"  This will help you with lab 6, and with lab 7!

!  Next week’s lab is more powerful
"  A multithreaded version of the web-crawler
"  URLs will be processed concurrently
"  Minimize interactions with shared resources

Next Week

!  All about the Java threading model
"  Can be very tricky! Make sure to attend lecture.

