CS11 — Java

Fall 2014-2015
Lecture 6



Today’s Topics

Lab 6: Web Crawler!
Java Sockets API

String operations



This Week’s Assignment

Build a simple web-crawler

o Connect to a web server

o Send an HTTP request to the server

o Get the HTTP response from the server
o Process it to find more URLs

0 Repeat!



Networking Protocols

Two main Internet communication protocols
TCP/IP (or just TCP)

o Transmission Control Protocol/Internet Protocol
o Stream-based, reliable, ordered communication

UDP

o User Datagram Protocol

o Message (“datagram™) based, unreliable, unordered
communication

Java supports both in java.net package

o TCP: java.net.Socket

o UDP: java.net.DatagramSocket

o Others too... e.qg. SSL (javax.net.ssl package)



Talking to Web Servers

HTTP: Hypertext Transfer Protocol
o Text-based protocol

o Request/response interactions
o Uses TCP/IP protocol

Connection parameters:

o |IP address, or hostname (resolved to IP address)

o Port (in range 1..65535; 1..1024 are reserved)
Different kinds of servers listen on specific ports
o E-mail servers typically listen to port 25

o SSH servers typically listen to port 22
o Web servers typically listen to port 80



Web-Page URLs

URL = Uniform Resource Locator
Specifies:

o Communications protocol

o Server’'s hostname or IP address

o Port (optional; each protocol has own default)

o Path to document or resource (also optional)
Example: http://www.cms.caltech.edu/people
o Protocol is HTTP

o Server's hosthame is www.cms .caltech. edu
o Port defaults to 80 for HTTP servers

o Resource on server is /people



Requesting a Web Page

Connect to the specified host and port
0 Use java.net.Socket since it's TCP

Send an HTTP request for the desired page

Receive HT TP response containing the page
o ...0r a response saying there was an error!

Close the socket used to connect
o Don’t hold on to networking resources

Do stuff with the retrieved document
o In our case, process it to find more URLs



Connecting to the Server

Create a new Socket for each connection
o Specify hosthame/IP address as a String
o Specify port number

webServer = "www.cms.caltech.edu";
webPort = 80;
Socket sock = new Socket (webServer, webPort);

Problem:
o What if there’s no server by that name?
o What if server isn’t listening on that port?

Socket constructor reports connection errors
by throwing exceptions



Interacting with Web Servers

If socket can’t connect to remote server, an
exception will be thrown

Connection may fail during interaction, too

Your web-crawler will need to catch the
exceptions that could be thrown

o Handling them can be simple — print a message
indicating the error, then go on to next URL

Use the Java AP| documentation to see what
exceptions to handle in your program



Communicating Over the Socket

Once socket is open, can get an InputStream and
an OutputStream from it

0 OutputStream is for sending to remote host

0 InputStream is for receiving from remote host

Problem:

0 InputStream and OutputStream not suited to text data!
o Are designed for byte streams

o “Read/write a byte,” or “read/write an array of bytes”

o Won't handle text character-sets

o Converting byte arrays to/from String objects is a big pain



Readers and Writers

Reader, Writer classes are for character streams

Can wrap a Reader around an InputStream

o Reader consumes bytes from InputStream; produces
characters or strings

Can wrap a Writer around an OutputStream
0 Writer takes characters; feeds bytes to OutputStream
...perfect for HTTP interactions!

Several different subclasses of Reader, Writer
o (Same with InputStream and OutputStream)



Sending HT'TP Requests

HTTP request must take form:
GET /people HTTP/1.1¢
Host: www.cms.caltech.edu+

Connection: close+
g

o The blank line is required!!! ©
o First line contains document/resource to fetch
For the root document of a website, must specify / as path

o Second line specifies web server hostname
(Multiple virtual hosts can be served from one physical server)

o Third line tells server to close connection when response is
completely sent




Example Request-Sending Code

Socket sock = new Socket (webHost, webPort)
sock.setSoTimeout (3000); // Time-out after 3 seconds

OutputStream os = sock.getOutputStream() ;

// true tells PrintWriter to flush after every output
PrintWriter writer = new PrintWriter (os, true);

writer.println("GET " + docPath + " HTTP/1.1");
writer.println("Host: " + webHost);
writer.println ("Connection: close");
writer.println() ;

// Request is sent! Server will start responding now.



Recetving the HT'TP Response

Use BufferedReader to read lines of text from
socket input
0 BufferedReader requires input from another Reader

0 Use InputStreamReader to convert socket's input-
stream into a reader
InputStream is = sock.getInputStream() ;
InputStreamReader isr = new InputStreamReader (is) ;

BufferedReader br = new BufferedReader (isr) ;

Can call br . readLine () until it returns null
o This is why we said “Connection: close’ in the request



Example Response-Recetving Code

InputStream is = sock.getInputStream() ;
InputStreamReader isr = new InputStreamReader (is);

BufferedReader br = new BufferedReader (isr) ;

while (true) {
String line = br.readLine();

if (line == null)
break; // Done reading document!

// Do something with this line of text.

System.out.println(line) ;



Exception Handling in the Web Crawler

Make sure your exception handling has the right
level of granularity.
Operations for crawling a web page:

1. Connect to remote server with a socket

2. Send the HTTP request
3. Read back the HTTP response
4. Parse URLs from the response text

All of these steps could conceivably throw an

exception.
o URL parsing may or may not, depending on your
implementation



Exception Handling: A Simple Approach

Operations for crawling a particular web page:
1. Connect to remote server with a socket

2. Send the HTTP request

3. Read back the HTTP response

4. Parse URLs from the response text
A simple approach:

o Wrap each step with its own try/catch block.

Does this approach make sense?

o If any step fails, cannot perform any subsequent steps!
An exception from steps 1-3 should terminate the
entire operation of crawling the web page

o (If a URL doesn’t parse, just go on to next URL in page...)



Smarter Exception Handling

Exceptions should be handled on a “per unit of
work” basis

Example:

o A good “unit of work” for the web crawler is attempting to
process a particular web page

A better approach:

o Put code for processing a single URL into a function

o Within the function, operations might throw exceptions
The function just lets any exceptions propagate out
Any exception will terminate the entire unit of work

o The function’s caller wraps the call with a try/catch block



Searching Strings

String class provides many useful features

Find the index of a character or string:

int indexOf (int ch)

int indexOf (int ch, int fromIndex)

int indexOf (String str)

int indexOf (String str, int fromIndex)
Also, lastIndexOf (.. .) for searching from end

These functions return -1 if value is not found
o Valid indexes are 0 to length() - 1

o O O 0O O



Manipulating Strings

Get a substring of a String
0 String substring(int beginIndex)

0 String substring(int beginIndex,
int endIndex)

Change the case of a string:

0 String tolowerCase ()

0 String toUpperCase ()

Trim whitespace off a string:

0 String trim()

Note: Java strings are immutable

o These operations return a new String object




Example: Searching for Words

// TODO: Get the word and line from somewhere...
String word = "after";
String line = ...;

// Search for our word in the current line.
int idx = 0;
while (true) ({
idx = line.indexOf (word, idx);
if (idx == -1) // No more copies of word in this line
break;

// Record that we found another copy of the word.
count++;

// Skip past this copy of the word, so that next
// iteration of the loop doesn't see it again!
idx += word.length() ;



Searching tor Links

Links are trickier to find
<a href="http://www.caltech.edu">Caltech</a>

1) Search for: a href="
2) Once you find that, look for the closing "
3) Text between the double-quotes is the URL

Make sure to handle case where multiple
URLSs appear in the same line

o After pulling out the current URL text, advance
the index past it, and look for next URL.

o Don’t need to handle links that wrap to next line




Tracking the Details

Create a simple URLDepthPair class to track the
depth of each URL that is found

First URL is at depth O

When processing a page, its URLs get created with
that page’s depth + 1

o Put new URLDepthPair objects into a list!

o After a page is processed, get the next URL to process
from your list.

Take a second command-line argument specifying
max depth to crawl a website to

This strategy doesn’t handle cycles very cleverly...



Lists ot URL-Depth Pairs

A LinkedList is good for this task

LinkedList<URLDepthPair> pendingURLs =
new LinkedList<URLDepthPair>() ;

When you find a new URL.:

pendingURLs . add (new URLDepthPair (1linkText, childDepth)) ;

When you need another URL to process:

while (!'pendingURLs.isEmpty()) ({
nextURLPair = pendingURLs.removeFirst() ;
// Process this URL-depth pair

}
When a URL is processed:

o Use another LinkedList to store processed URLs
At end of program, print out all processed URLs



Plan for Reuse!

Make URL-processing code reusable
o Encapsulate it in a method or a few methods
o This will help you with lab 6, and with lab 7!

Next week’s lab is more powerful
o A multithreaded version of the web-crawler

o URLs will be processed concurrently
o Minimize interactions with shared resources




Next Week

All about the Java threading model
o Can be very tricky! Make sure to attend lecture.



