
CS11 – Java

Fall 2014-2015
Lecture 5

Today’s Topics

!  Introduction to Java threads
!  Swing and threading
!  Lab 5 Hints

Java Threads

!  A “thread of execution” is a single, sequential
flow of execution through your program
"  Threads have a beginning and an end
"  A thread does only one thing at a time

!  All programs have at least one thread of
execution
"  The “main thread” runs your main() method

!  Multi-threaded programs have several
threads of execution
"  They can do multiple things “at the same time”

Standard Java Threads

!  The Java VM uses multiple threads
"  The main thread runs your program
"  The garbage-collector may use a thread
"  Java AWT/Swing starts its own thread

!  For event-dispatching

"  Some Java library classes use threads internally
!  You can start your own threads too

"  This week’s lab doesn’t need them (phew!)

!  A thread can have local resources; only used by the thread
!  Threads can also share resources between each other

"  This can lead to many problems
!  One big problem: interleaved access

"  Example: count is a shared variable. Assume count = 15.
"  Two threads executing count = count + 1;
 Thread B Thread A

Threads and Resources

Retrieve count: 15

Calculate 15 + 1 = 16

Store 16 into count

Retrieve count: 15
Calculate 15 + 1 = 16

Store 16 into count

Locking Shared Resources

!  Shared resources must be manipulated atomically
"  Only allow one thread to access shared resource at a time
"  Shared resources can be locked by a thread

!  If threads can lock multiple shared resources,
deadlock can occur
"  Thread A locks resource R1
"  Thread B locks resource R2
"  Thread A tries to lock resource R2…
"  Thread B tries to lock resource R1…
"  Locking order is the issue here.

R1

R2

Thread A

Thread B

Swing and Thread-Safety

!  Swing has its own thread for event handling
"  the event dispatcher thread

!  …but, Swing components aren’t thread-safe!
!  To be thread-safe in Swing:

"  Once a Swing component has been made visible,
only interact with it from event dispatcher thread.

!  Initializing a Swing UI from another thread is
fine (it hasn’t been made visible yet)
"  e.g. usually done from the main thread

Long-Running Tasks and Swing

!  Very common to have UIs performing long-
running tasks
"  e.g. web browsers frequently have large files to

download when displaying a web page, etc.
!  Problem:

"  If long-running operation is performed on the
event-dispatch thread, can’t process events!

"  There is only one event-dispatch thread. If it’s tied
up with work, the UI will freeze until work is done.

Long-Running Tasks and Swing (2)

!  Swing provides a solution to this issue:
"  javax.swing.SwingWorker

!  Can dispatch a long-running task on a worker
thread, in the background
"  Task won’t tie up the event-dispatch thread
"  User can still interact with the user interface while

the task is being completed
!  When task is finished, SwingWorker’s results

are made available on event-dispatch thread
"  Can update user interface with results of task

SwingWorker Details

!  SwingWorker is an abstract class
"  Must be subclassed to perform specific tasks

!  Several important methods:
"  protected Object doInBackground()

!  Implement this method to perform the long-running task
!  This method is never called on the event-dispatch thread
!  (uses a small thread-pool of worker threads)

"  protected void done()
!  This method is always called on event-dispatch thread!
!  Implement this method to update your Swing GUI with

results of long-running task

SwingWorker<T,V> Details

!  SwingWorker is also a generic class
"  Can (and should) specify type parameters

!  Type T specifies what doInBackground()
returns
"  protected T doInBackground()

!  If your doInBackground() implementation
doesn’t return anything:
"  Just set T to Object, and return null

SwingWorker<T,V> Details (2)

!  Type V represents intermediate state
"  Some tasks generate intermediate results that

need to be represented in the user interface
!  (Many tasks do not, so not every SwingWorker

subclass uses this functionality)
"  In these cases, task’s doInBackground() calls:

!  protected void publish(V[] chunks)
!  Whenever intermediate state must be published, this

can be called
"  Calling publish() causes this method to be

called on the event-dispatcher thread:
!  protected void process(List<V> chunks)

SwingWorker<T,V> Details (3)

!  As before, if your SwingWorker task doesn’t
publish intermediate state:
"  Just set V to Object, and don’t use publish()

method

Shutting Down a GUI Application

!  In Java AWT, closing a Frame just hides the
window
"  If you don’t do something special, application

keeps running
"  Have to register a WindowListener impl to exit

application when window closes
!  In Swing, JFrame gives you options

JFrame f = new JFrame("My App!");
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

"  Default is HIDE_ON_CLOSE; like AWT Frame

Arrays in Java

!  In Java, arrays are also objects
"  Some different syntax though!

!  Example:
int[] myInts = new int[10]; // Allocate the array.
for (int i = 0; i < myInts.length; i++) {
 myInts[i] = 100 * i; // Store stuff in it.
}

"  In Java, all arrays are dynamically allocated
"  Elements are accessed with brackets (like C/C++)
"  Arrays expose a length field, indicating their size
"  length is read-only (of course)

Array Variables

!  Array-types have brackets after type, not after
variable name
"  String[] names; vs. String names[];
"  Latter form is supported, but is discouraged.

!  Can declare array-variables without assigning
"  boolean[] flags; // Array of boolean values
"  float[] weights; // Array of floats

!  Must initialize them before using
"  Can allocate new array with new type[size];

!  size can be zero! Called an “empty array.”
"  Can assign an existing array to the variable

!  (Java arrays are basically objects with additional syntax)
"  Can set to null too!

More Array Initialization

!  Can also assign specific values to arrays
String[] colorNames = {
 "puce", "mauve", "fuchsia", "chartreuse", "umber"
};
// colorNames.length == 5

"  Syntactic sugar for the initialization operations
"  Can still reassign and reinitialize such arrays

!  colorNames is a reference to an array of String
objects

Arrays of Objects

!  Arrays of objects initially contain null values
"  Array initialization does not initialize object-

references
"  Must do that in a separate step

!  Example:
// Allocate an array of 20 point-references
Point2d[] points = new Point2d[20];

// Make a new Point2d object for each elem
for (int i = 0; i < points.length; i++)
 points[i] = new Point2d();

Arrays of Arrays

!  Arrays can contain other arrays
int[][] nums2d; // Array of arrays of ints.

!  First the array-of-arrays is allocated:
nums2d = new int[20][];

"  Each element of nums2d is of type int[].
!  Next, each inner array is allocated

for (int i = 0; i < nums2d.length; i++)
 nums2d[i] = new int[50];

!  When array is square, Java has a shortcut
int[][] nums2d = new int[20][50]; // Same thing!

More Arrays of Arrays

!  Inner arrays can be different sizes, if need be
int[][] reducedMatrix;
reducedMatrix = new int[20][];
for (int i = 1; i <= 20; i++)
 reducedMatrix[i - 1] = new int[i];

"  Can’t do this with the shortcut syntax
!  Can also specify nested initial values

double[][] weights = {
 {3.1,2.6}, {1.5,4.4,-3.6}, null, {6.2}
};

...

Copying Arrays

!  Use System.arraycopy() to copy one
array to another efficiently

!  Can use clone() method to duplicate array
"  Result’s type is Object; must cast to proper type

int[] nums = new int[35];
...
int[] numsCopy = (int[]) nums.clone();

"  Copy is shallow – only top-level array is copied!
!  If array of objects, the objects are not cloned
!  If array of arrays, subarrays are not cloned either

Next Week

!  Java Sockets API
!  String processing

