
CS11 – Java

Fall 2014-2015
Lecture 4

Java File Objects

!  Java represents files with java.io.File class
"  Can represent either absolute or relative paths

!  Absolute paths start at the root directory of the
filesystem
"  e.g. “C:\Documents and Settings\Donnie Pinkston\Desktop\Foo.java”

!  Note: “\” characters must be escaped in Java strings!

"  e.g. “/home/donnie/Desktop/Foo.java”

!  Relative paths start from the current directory
"  Can use “.” to mean the current directory
"  “..” means the parent of the current directory

Java File Objects (2)

!  java.io.File provides several constants
"  File.separator is a String containing the name

separator that appears in paths
!  On Windows, set to “\\”. On Unix variants, set to “/”

"  Also File.separatorChar, a char constant
!  Also have constants for path separators

"  File.pathSeparator is a String containing the
separator between path components
!  On Windows, set to “;”. On Unix variants, set to “:”

"  Useful when you must programmatically generate a
classpath or other collection of file/directory paths

Creating File Objects

!  File constructor is very easy to use
"  File(String pathname)

!  Specify a relative or absolute path to the file
"  File(File parent, String child)

!  Assumes that parent is a directory
!  Creates a new File object to reference a file child in the

directory parent
"  File(String parent, String child)

!  Same as previous constructor

!  These constructors don’t test whether the
files actually exist!

Examining File Objects

!  Many helpful methods to examine files, such as:
"  boolean exists()

!  Is there a file or directory on the filesystem corresponding to the
File object?

"  boolean isFile()
!  Is the File object a “normal” file? (checks that it’s not a directory,

and also some system-specific checks)
"  boolean isDirectory()

!  Is the File object a directory?
"  boolean canRead()

!  Does the file exist, and can it be read by the application?
"  boolean canWrite()

!  Does the file exist, and can it be written by the application?
"  long length()

!  Reports a file’s length.

Manipulating File Objects

!  Can perform basic file operations, such as:
"  boolean delete()

!  Delete a file, or a directory (if it’s empty). Returns true if
successful, false if not.

"  boolean renameTo(File dest)
!  Rename a file or directory to a different location
!  May not succeed if moving the file across filesystems, or

if destination file already exists, etc.

Navigating the Filesystem

!  Can also use File to navigate the filesystem:
"  File[] File.listRoots()

!  Static method that returns an array of File objects specifying
the system’s root directories

"  File[] listFiles()
!  Instance method that returns an array of File objects within a

directory

"  (will talk about Java arrays in a future class)
!  Can also specify filters to listFiles() method

"  Implement FilenameFilter or FileFilter
interface to exclude files based on some criteria

Java Stream IO

!  Java provides a stream-based IO mechanism
!  java.io.InputStream, java.io.OutputStream

"  Abstract base-classes that specify all operations
that streams should provide

!  Usually open an input- or output-stream via
some specific mechanism
"  e.g. open a file and get an input-stream
"  e.g. open a network connection; get an output-

stream for sending, an input-stream for receiving

Java Stream IO (2)

!  InputStream methods:
"  read() for reading one or more bytes

!  A blocking method: will not return until more data is available,
or it knows that a read will definitely fail

"  available() reports how many bytes can be read
without blocking

"  close() closes the input stream
!  Releases any resources associated with the stream

!  OutputStream methods:
"  write() for writing one or more bytes
"  flush() to force any internal Java write-buffers to be

written out to the OS (may be buffered by OS though)
"  close() closes the output stream

Java Stream IO (3)

!  InputStream and OutputStream are byte
streams
"  The values actually transferred are bytes
"  Often not suitable for text-based data!

(Particularly locale-specific data.)
!  java.io.Reader and java.io.Writer

interfaces work with character data
"  Basically same operations as InputStream and
OutputStream, but with char values

Java Stream IO (4)

!  Java stream API supports composing streams
!  Example: read lines of a text file
FileInputStream fis =
 new FileInputStream("foo.txt");
!  FileInputStream derives from InputStream

InputStreamReader isr =
 new InputStreamReader(fis);
!  Wrap the input-stream with a Reader to read character data

BufferedReader br =
 new BufferedReader(isr);
!  Add buffering to reader so we can read whole lines of text

!  (Java stream IO API is a little annoying…)

Java Stream IO and Exceptions

!  File objects report some failures with a
boolean result…
"  boolean delete()
"  boolean renameTo(File dest)

!  Most stream IO operations report failures by
throwing exceptions
"  Usually java.io.IOException, or some

subclass of this exception

Exceptions

!  Sometimes code can detect an error, but not
necessarily resolve it
"  e.g. a FileInputStream can detect that the file

can’t be opened, but what should it do?
!  Several ways to indicate errors to the caller

"  Return a special error value
!  …unless it’s a constructor, which can’t return a value!

"  Throw an exception to signal the error
!  An exception aborts the current computation

"  Execution transfers immediately to handler code

Throwing Exceptions

!  Throwing exceptions is easy:
public double computeValue(double x) {
 if (x < 3.0) {
 throw new IllegalArgumentException(
 "x must be >= 3, got " + x);
 }
 return 0.5 * Math.sqrt(x – 3.0);
}

!  A new exception object is created and then thrown
!  Exception is populated with a stack-trace

"  Specifies where the exception object was created
(not where it was thrown…)

"  Best to create the exception right when you throw it

Throwing Exceptions (2)

!  When exception is thrown, execution immediately
transfers to handler for that exception

public double computeValue(double x) {
 if (x < 3.0) {
 throw new IllegalArgumentException(
 "x must be >= 3, got " + x);
 }
 return 0.5 * Math.sqrt(x – 3.0);
}

!  For above function, when exception is thrown, no
more code inside the function is executed.

!  Can specify an error message for exceptions
"  Should indicate what is expected, and what actually happened

Exception Handlers

!  To handle an exception, code must catch it
void main(String[] args) {
 double x = getDouble();
 try {
 double result = computeValue(x);
 System.out.println("Result is " + result);
 }
 catch (IllegalArgumentException e) {
 System.out.println("Bad input: " + e.getMessage());
 }
}

!  Code inside try block could throw an exception…
!  catch block will handle any errors that occur

"  IllegalArgumentException errors, that is…

Exception Handlers (2)

!  If computeValue() throws, execution transfers
immediately to catch-block with same exception type

void main(String[] args) {
 double x = getDouble();
 try {
 double result = computeValue(x);
 System.out.println("Result is " + result);
 }
 catch (IllegalArgumentException e) {
 System.out.println("Bad input: " + e.getMessage());
 }
}

"  No result would be printed; the error is printed instead.

Exception Handlers (3)

!  To catch exceptions from code that could
throw, must enclose that code in a try block
"  A try block can only handle exceptions that

occur within that block of code!
!  Exception’s type governs which catch block

actually handles an exception
"  Specify one or more catch blocks immediately

after the try block
"  First catch block with matching type will handle

the exception
"  After catch block executes, execution resumes

after try/catch statement (only one catch runs)

Java Exceptions

!  Java has restrictions on exception handling:
"  Only objects of type java.lang.Throwable

(and subclasses) can be thrown
"  In general, methods must declare what kinds of

exceptions they throw
!  Another aspect of Java enforcing correctness
!  Forces programs to handle exceptions, or to

explicitly declare what might be thrown

Java Exception Hierarchy

Throwable
 Base-class for all throwable
objects in Java

Error
 Serious issues in JVM; apps
generally won’t handle them

Exception
 Standard run-of-the-mill problems
that apps might want to handle

RuntimeException
 Apps may or may not handle
these. Usually indicate
programming errors.

Throwable

Error Exception

RuntimeException

... ...

...

Checked Exceptions

!  Checked exceptions:
"  Any subclass of Exception that doesn’t derive from
RuntimeException

!  Methods must specify checked exceptions they throw:
import java.io.IOException;

public String getQuote() throws IOException {
 ...
 if (errorOccurred)
 throw new IOException("An error occurred!");

 return quote;
}

"  Java compiler checks method’s code against specifications
"  Can also specify runtime exceptions, but not required

Checked Exceptions (2)

!  A method may specify a base-class of what it throws
public String getQuote() throws IOException {
 ...
}

"  All these exceptions derive from IOException:
!  UnknownHostException (couldn’t resolve hostname)
!  EOFException (unexpected end of file)
!  SocketException (general socket problem)

"  The above method could also throw these without changing its
exception specification

!  Code can also catch the base-class type
"  e.g. could catch (IOException e) and handle the above

exceptions

What Exceptions To Handle?

!  Java API Documentation indicates which
exceptions are thrown
"  API docs also say when they are thrown

!  IO and networking libraries can throw many
exceptions

!  Threading libraries also can throw some
exceptions

!  Always very important to handle exceptions
gracefully, to make your applications robust!

This Week’s Assignment

!  This week, will add a few new features to
your Fractal Explorer
"  The ability to render multiple fractals

!  A dropdown combobox will allow users to select which
fractal to render

"  The ability to save the currently displayed fractal
image to disk

!  Both features shouldn’t be very hard to build
"  Can rely on various Java APIs to make these

tasks very simple

Multiple Fractals

!  Most GUI toolkits support
dropdown combo-boxes
"  Allows user to choose

from a list of options
!  Provided by the Swing
JComboBox class
"  Very easy to set up and use
"  Fires ActionEvents when

the selection changes

Saving Images

!  Also add a button to your
user interface, to save
the current image

!  Swing provides two
helpful classes:
"  JFileChooser lets you

select a file for opening
or saving

"  JOptionPane can be used to show dialogs when
things go wrong ☺

Saving Images (2)

!  Now there are multiple
sources of action events

!  Generally, want to reduce
total number of objects
your programs create

!  Goal:
"  Implement a single action-listener that can handle

events from all sources

Action Commands

!  Most components that fire ActionEvents also
have an action-command field
"  Use this field to indicate the source’s purpose or action

JButton saveButton = new JButton("Save Image");
saveButton.setActionCommand("save");

"  Other sources get their own action-commands too.

!  Action-command value is provided in ActionEvent
"  getActionCommand() method on ActionEvent
"  Now ActionListener can listen to multiple sources, and

perform the proper action based on the action-command

Multiple-Source Action Listeners

!  Example action-listener implementation:

void actionPerformed(ActionEvent e) {
 String cmd = e.getActionCommand();

 if (e.getSource() == fractalChooser) {
 ... // Get the fractal the user selected,
 ... // and display it.
 }
 else if (cmd.equals("reset")) {
 ... // Reset the fractal image.
 }
 else if (cmd.equals("save")) {
 ... // Save the current fractal image.
 }
}

