CS11 — Java

Fall 2014-2015
Lecture 4

Java File Objects

Java represents files with java.io.File class
o Can represent either absolute or relative paths

Absolute paths start at the root directory of the
filesystem

0 €.g. "C:\Documents and Settings\Donnie Pinkston\Desktop\Foo.java”
Note: “\" characters must be escaped in Java strings!

o e.g. “/home/donnie/Desktop/Foo.java”
Relative paths start from the current directory

kN

o Can use “.” to mean the current directory
o “..” means the parent of the current directory

Java File Obijects (2)

java.io.File provides several constants

0 File.separator is a String containing the name
separator that appears in paths
On Windows, set to “\\". On Unix variants, set to “/"

0 Also File.separatorChar, a char constant

Also have constants for path separators

0 File.pathSeparator is a String containing the
separator between path components
On Windows, set to “;”. On Unix variants, set to “:”

o Useful when you must programmatically generate a
classpath or other collection of file/directory paths

Creating File Objects

File constructor is very easy to use

0 File (String pathname)
Specify a relative or absolute path to the file

0 File(File parent, String child)
Assumes that parent is a directory

Creates a new File object to reference a file child in the
directory parent

0 File(String parent, String child)
Same as previous constructor

These constructors don't test whether the

files actually exist!

Examining File Objects

Many helpful methods to examine files, such as:

0 boolean exists ()
Is there a file or directory on the filesystem corresponding to the
File object?

0 boolean isFile()

Is the File object a “normal” file? (checks that it's not a directory,
and also some system-specific checks)

0 boolean isDirectory()
Is the File object a directory?
0 boolean canRead()
Does the file exist, and can it be read by the application?
0 boolean canWrite ()
Does the file exist, and can it be written by the application?
0 long length(()
Reports a file’s length.

Manipulating File Objects

Can perform basic file operations, such as:

0 boolean delete ()
Delete a file, or a directory (if it's empty). Returns true if
successful, false if not.

0 boolean renameTo (File dest)
Rename a file or directory to a different location

May not succeed if moving the file across filesystems, or
if destination file already exists, etc.

Navigating the Filesystem

Can also use File to navigate the filesystem:

0 File[] File.listRoots ()

Static method that returns an array of File objects specifying
the system’s root directories

0 File[] listFiles|()

Instance method that returns an array of File objects within a
directory

o (will talk about Java arrays in a future class)
Can also specify filters to 1istFiles () method

o Implement FilenameFilter or FileFilter
interface to exclude files based on some criteria

Java Stream 10O

Java provides a stream-based |O mechanism

java.io.InputStream, java.i10.0utputStream

o Abstract base-classes that specify all operations
that streams should provide

Usually open an input- or output-stream via

some specific mechanism

0 e.g. open a file and get an input-stream

0 e.g. open a network connection; get an output-
stream for sending, an input-stream for receiving

Java Stream 10 (2)

InputStream methods:

o read () for reading one or more bytes

A blocking method: will not return until more data is available,
or it knows that a read will definitely fail

0 available () reports how many bytes can be read
without blocking

0 close () closes the input stream
Releases any resources associated with the stream
OutputStream methods:

0 write () for writing one or more bytes

o f£lush () to force any internal Java write-buffers to be
written out to the OS (may be buffered by OS though)

0 close () closes the output stream

Java Stream 10O (3)

InputStream and OutputStream are byte

streams

o The values actually transferred are bytes

a Often not suitable for text-based data!
(Particularly locale-specific data.)

java.io.Reader and java.io.Writer
interfaces work with character data

o Basically same operations as InputStream and
OutputStream, but with char values

Java Stream 10 (4)

Java stream API supports composing streams

Example: read lines of a text file
FileInputStream fis =
new FileInputStream("foo.txt")
FileInputStream derives from InputStream
InputStreamReader isr =

new InputStreamReader (fis) ;
Wrap the input-stream with a Reader to read character data

BufferedReader br =
new BufferedReader (isr) ;

Add buffering to reader so we can read whole lines of text
(Java stream |O APl is a little annoying...)

Java Stream 10 and Exceptions

File objects report some failures with a
boolean result...

0 boolean delete ()

0 boolean renameTo (File dest)

Most stream IO operations report failures by
throwing exceptions

0 Usually java.io.IOException, or some
subclass of this exception

Exceptions

Sometimes code can detect an error, but not
necessarily resolve it

0 e.g. a FileInputStream can detect that the file
can’t be opened, but what should it do?

Several ways to indicate errors to the caller

2 Return a special error value
...unless it's a constructor, which can’t return a value!

o Throw an exception to signal the error

An exception aborts the current computation
o Execution transfers immediately to handler code

Throwing Exceptions

Throwing exceptions is easy:

public double computeValue (double x) {
if (x < 3.0) {

throw new IllegalArgumentException (
"x must be >= 3, got " + x);

}
return 0.5 * Math.sqrt(x - 3.0);

}
A new exception object is created and then thrown

Exception is populated with a stack-trace

o Specifies where the exception object was created
(not where it was thrown...)

o Best to create the exception right when you throw it

Throwing Exceptions (2)

When exception is thrown, execution immediately

transfers to handler for that exception
public double computeValue (double x) {
if (x < 3.0) {
throw new IllegalArgumentException (
"x must be >= 3, got " + x);

}
return 0.5 * Math.sqrt(x - 3.0);

}
For above function, when exception is thrown, no
more code inside the function is executed.

Can specify an error message for exceptions
o Should indicate what is expected, and what actually happened

Exception Handlers

To handle an exception, code must catch it
void main(String[] args) {
double x = getDouble() ;

try {
double result = computeValue (x) ;
System.out.println("Result is " + result)

}
catch (IllegalArgumentException e) ({

System.out.println("Bad input: " + e.getMessage())

}
}

Code inside try block could throw an exception...
catch block will handle any errors that occur
0 IllegalArgumentException errors, thatis...

Exception Handlers (2)

If computeValue () throws, execution transfers
iImmediately to catch-block with same exception type

void main (String[] args) {
double x = getDouble() ;
try {
double result = computeValue (x) ;
System.out.println("Result is " + result)

}
catch (IllegalArgumentException e) ({

System.out.println("Bad input: " + e.getMessage())

}
}

o No result would be printed; the error is printed instead.

Exception Handlers (3)

To catch exceptions from code that could
throw, must enclose that code in a try block

o A try block can only handle exceptions that
occur within that block of code!

Exception’s type governs which catch block
actually handles an exception

o Specify one or more catch blocks immediately
after the try block

o First catch block with matching type will handle
the exception

o After catch block executes, execution resumes
after try/catch statement (only one catch runs)

Java Exceptions

Java has restrictions on exception handling:

o Only objects of type java.lang.Throwable
(and subclasses) can be thrown

o In general, methods must declare what kinds of
exceptions they throw
Another aspect of Java enforcing correctness

Forces programs to handle exceptions, or to
explicitly declare what might be thrown

Java Exception Hierarchy

Throwable
Base-class for all throwable
objects in Java

Error

Serious issues in JVM; apps

generally won’t handle them
Exception

Standard run-of-the-mill problems

that apps might want to handle
RuntimeException

Apps may or may not handle
these. Usually indicate
programming errors.

Throwable

A

Error Exception

T

RuntimeException

!

Checked Exceptions

Checked exceptions:

o Any subclass of Exception that doesn'’t derive from
RuntimeException

Methods must specify checked exceptions they throw:

import java.io.IOException;

public String getQuote () throws IOException {

if (errorOccurred)
throw new IOException ("An error occurred!");

return quote;

}
o Java compiler checks method’s code against specifications

o Can also specify runtime exceptions, but not required

Checked Exceptions (2)

A method may specify a base-class of what it throws
public String getQuote () throws IOException {

}

o All these exceptions derive from IOException:
UnknownHostException (couldn’t resolve hosthame)
EOFException (unexpected end of file)
SocketException (general socket problem)

o The above method could also throw these without changing its
exception specification

Code can also catch the base-class type

0 e.g.could catch (IOException e) and handle the above
exceptions

What Exceptions To Handler

Java APl Documentation indicates which
exceptions are thrown

2o APl docs also say when they are thrown

|O and networking libraries can throw many
exceptions

Threading libraries also can throw some
exceptions

Always very important to handle exceptions
gracefully, to make your applications robust!

This Week’s Assignment

This week, will add a few new features to
your Fractal Explorer

o The ability to render multiple fractals

A dropdown combobox will allow users to select which
fractal to render

o The ability to save the currently displayed fractal
Image to disk
Both features shouldn’t be very hard to build

o Can rely on various Java APls to make these
tasks very simple

Multiple Fractals

» Most GUI toolkits support

Fractal: | Mandelbrot m

dropdown combo-boxes
o Allows user to choose ‘
from a list of options

» Provided by the Swing —
JCOInbOBOx CIaSS Fractal: v Mandelbrot

Tricorn
o Very easy to set up and use

0 Fires ActionEvents when
the selection changes

Saving Images —

Fractal: | Mandelbrot g

= Also add a button to your
user interface, to save
the current image

= Swing provides two
helpful classes:
0 JFileChooser lets you

select a file for opening
or saving

0 JOptionPane can be used to show dialogs when
things go wrong ©

Saving Images (2) -

Fractal Explorer

Fractal: | Mandelbrot g

= Now there are multiple
sources of action events

= Generally, want to reduce
total number of objects
your programs create

(Save Image \ / Reset Display \

= Goal:

o Implement a single action-listener that can handle
events from all sources

Action Commands

Most components that fire ActionEvents also
have an action-command field
o Use this field to indicate the source’s purpose or action

JButton saveButton = new JButton ("Save Image") ;

saveButton.setActionCommand ("save") ;

o Other sources get their own action-commands too.

Action-command value is provided in ActionEvent

0 getActionCommand () method on ActionEvent

o Now ActionListener can listen to multiple sources, and
perform the proper action based on the action-command

Multiple-Source Action Listeners

Example action-listener implementation:

void actionPerformed (ActionEvent e) {
String cmd = e.getActionCommand () ;

if (e.getSource() == fractalChooser) ({
// Get the fractal the user selected,
// and display it.

}

else if (cmd.equals("reset")) {
// Reset the fractal image.

}

else if (cmd.equals("save")) {
// Save the current fractal image.

}

