
CS11 – Java

Fall 2014-2015
Lecture 3

Today’s Topics

!  Class inheritance
!  Abstract classes
!  Polymorphism
!  Introduction to Swing API and event-handling
!  Nested and inner classes

Class Inheritance

!  A third of the “four big OOP concepts”
!  A class can extend another class to build on its

functionality
!  Terminology:

"  Parent class, or superclass, or base class
"  Child class, or subclass, or derived class

!  Child classes inherit all methods and fields within
parent class
"  Can add new functionality
"  Can also override parent-class methods

Class Inheritance (2)

!  Class inheritance models an “is-a” relationship
"  Example class hierarchy:

Vehicle
 └ Wheeled Vehicle └ Water Vehicle
 └ Dump Truck └ Sailboat └ Barge

!  The child class is a specialization of the parent class
!  Child class also has characteristics of parent class

"  Can treat child class as if it were any parent-type
!  “A dump truck is a wheeled vehicle.”
!  “A sailboat is a vehicle.”
!  “A water vehicle is a vehicle.”

Class Inheritance (3)

!  Example class hierarchy:
Vehicle
 └ Wheeled Vehicle └ Water Vehicle
 └ Dump Truck └ Sailboat └ Barge

!  Sibling types do not model an “is-a” relationship!
"  These statements are clearly false:

!  “A dump truck is a water vehicle.”
!  “A wheeled vehicle is a barge.”

!  What about these statements?
!  “A vehicle is a dump truck.”
!  “A water vehicle is a sailboat.”

"  Depends on the actual vehicle being considered!
!  Need to examine a specific vehicle to verify the statement

Example Class Hierarchy

!  The number classes in Java
java.lang.Object
 └ java.lang.Number
 └ java.lang.Integer

"  Integer “is a” Number, “is an” Object
"  Integer extends Number, which extends Object
"  Integer inherits all methods that Object defines

!  boolean equals(Object o)
!  int hashCode()
!  String toString()
!  Class getClass()

"  Integer also overrides some of these methods

Overriding Object.toString()

!  Really useful idea, especially for debugging
!  Used in string concatenation

"  You type this:
String msg = "Point is " + pt;

"  Compiler automatically does this:
String msg = "Point is " + pt.toString();

!  Simple to define:
@Override
public String toString() {
 return "(" + xCoord + "," + yCoord + ")";
}

Classes and Objects

!  A class’ parent-class methods can be called
without any special syntax.

Integer intObj = new Integer(53);
...
Class c = intObj.getClass(); // Get type info

"  Integer is also an Object – can call methods
declared and/or implemented on Object

!  Child class can also provide its own methods
System.out.println("Value is " + intObj.intValue());

"  Integer extends Object’s functionality
!  intValue() returns an int version of the Integer

Reference Types

!  Every reference has a class-type associated with it
Object obj; // A reference of type Object
Integer val; // A reference of type Integer

!  The variable’s type dictates what is accessible
!  Example:

Object obj = new Integer(38);
...
System.out.println(obj.intValue()); COMPILE ERROR

"  Compile error, because Object doesn’t define intValue()
"  intValue() is declared in Number class (parent of Integer)
"  Even though obj refers to an Integer object, only the Object

methods are visible

Navigating the Hierarchy

!  Number hierarchy is like this:

!  Moving down the hierarchy requires a run-time test.
Object obj = new Integer(453);
...
int i = ((Integer) obj).intValue(); // Cast obj

"  You could also try this:
float f = ((Float) obj).floatValue(); // Runtime error

!  This code compiles, but it will report an error at runtime
"  Java can’t assume the actual object-type at compile time!

!  (Even when it’s obvious to a human…)
"  So, we have a runtime type-check, and a potential error.

Object

Number

Integer Float Double

What Child Classes Don’t Get

!  Child classes cannot access private
members in parent classes

!  protected access-modifier allows the child
class to access parent-class’ members
"  Only available within the class, and to subclasses
"  Looser than private, but still not public!

!  Child classes also don’t inherit static fields
and methods
"  They can be accessed, but they are not inherited

A Generic Task Class
public class Task {
 private String name;
 private boolean done;

 public Task(String taskName) {
 name = taskName;
 done = false;
 }

 /** Just record that the task is done. */
 public void doTask() {
 done = true;
 }

 /** Report if the task is done or not. */
 public boolean isDone() {
 return done;
 }
}

Making Useful Tasks

!  Our Task class is very generic…
"  …so generic that it’s nearly useless!

!  Extend Task class to provide useful tasks
public class FileUploadTask extends Task {
 public FileUploadTask() {
 // Call parent-class constructor
 super("upload file");
 }

 ...
}

"  Parent-class constructors are not inherited!
"  If parent class doesn’t have a default constructor, we must

explicitly call one in the child class, using super keyword

Overriding Parent-Class Methods

!  FileUploadTask should provide its own
implementation of doTask()

public class FileUploadTask extends Task {
 ...

 /** Perform the file-upload operation. */
 @Override
 public void doTask() {
 ... // Open a connection, read a file, etc.
 }
}

"  Method’s signature is same as parent-class’
method signature

"  This overrides Task’s implementation of doTask()

Polymorphism

!  Now we want to upload a file:
Task t = new FileUploadTask();
t.doTask();

"  Which implementation of doTask() does this call?
!  In Java, all instance-methods are virtual

"  Even though t is a Task reference, the FileUploadTask
implementation is called

"  Reason: t refers to an object of type FileUploadTask
!  This is called polymorphism

"  The fourth “Big OOP Concept”
"  A statement’s behavior changes, depending on the type of

the objects involved

Calling Parent-Class Methods

!  Problem:
"  FileUploadTask.doTask() doesn’t set done to true
"  Also, done is private!

!  One solution:
"  FileUploadTask.doTask() implementation can call the

parent-class implementation:
/** Perform the file-upload operation. */
@Override
public void doTask() {
 ... // Open a connection, read file, etc.

 // All done!
 super.doTask();
}

The Task Abstraction

!  Actually doesn’t make much sense for Task
to have an implementation of doTask()
"  Change Task to be an abstract class
"  An abstract class declares a set of behaviors, but

only partially defines it.
!  Abstract classes cannot be instantiated

"  Child classes must be provided, that implement
the missing functionality

"  Example: FileUploadTask must provide an
implementation of doTask(), that uploads a file.

The New, Abstract Task Class

!  Our abstract Task class:
// A class that represents a generic task
public abstract class Task {
 private String name;
 private boolean done;

 public Task(String taskName) {
 name = taskName;
 done = false;
 }

 // Child classes implement this method.
 public abstract void doTask();

 ... // Rest of class
}

!  Abstract classes can still have fields and non-abstract methods

The New FileUploadTask

!  FileUploadTask doesn’t “override” doTask()
"  There’s nothing to override!
"  FileUploadTask implements doTask()

!  Again, the signatures must match up
/** Implement doTask() to upload a file. */
public void doTask() {
 ... // Open a connection, read the file, etc.
}

"  (Without the abstract modifier, of course!)
"  Of course, we can’t do super.doTask() anymore

!  Child class must provide an implementation of every
abstract parent-class method
"  If not, child class must also be declared abstract.

Completing the Abstraction

!  How can a task be marked as done?
!  A simple solution: set done to be protected
!  Another good solution:

"  Task can provide another protected method to do this:
protected void reportTaskDone() {
 if (done) {
 ... // Task was already done! Complain.
 }
 done = true;
}

"  Now only child classes can report that the task is done
!  Which solution is more extensible?

"  Might want to add other processing when a task is finished
"  Can easily add this to reportTaskDone() later

Task References

!  You can’t instantiate the abstract Task class
Task t = new Task("send e-mail"); COMPILE ERROR

"  The implementation of Task is incomplete!
!  You can have a Task-reference

Task t = new FileUploadTask();
t.doTask(); // Calls FileUploadTask.doTask()
t = new SendEMailTask();
t.doTask(); // Calls SendEMailTask.doTask()

"  The correct implementation of doTask() gets called
because of polymorphism

!  APIs are made generic by using the base-class type
void enqueueTask(Task t) {
 pendingList.store(t);
}

Swing: A Quick Tour

!  First GUI framework in Java was the AWT
"  Abstract Windowing Toolkit
"  Could perform basic operations
"  Not very pretty, or extensible

!  Java 1.2 introduced the Swing API
"  Built on top of some AWT functionality
"  Reimplemented many higher-level AWT classes
"  Customizable look-and-feel
"  Very extensible, feature-rich API
"  A bit slower than AWT, since it’s “Pure Java”

Swing Classes

!  Most Swing classes are in javax.swing package
(and some sub-packages)

!  Quite a few AWT classes are used by Swing!
"  Events, event-handlers, geometry, images, drag-and-drop,

etc.
!  Swing UI widgets derive from JComponent

"  Represents any UI component in Swing
"  JComponent derives from java.awt.Container
"  Custom Swing components can also use JComponent as

their parent class

Heavyweight Components

!  AWT UI components are “heavyweight”
"  Each component has its own native graphics

resources
"  Components don’t use “pure Java” code to

draw their graphics
!  Actually use operating-system calls

"  Overlapping components overwrite each other

Lightweight Components

!  Swing UI components are “lightweight”
"  Components use only Java to draw themselves
"  Native graphics resources are shared by Swing

components, as much as possible
"  Example:

!  A popup menu fully within an app’s window is drawn
using that window’s resources

!  A popup menu extending outside an app’s window will
get its own window

"  Swing can provide transparent regions more easily,
since components share graphics resources

Mixing AWT and Swing

!  Lightweight and heavyweight
components don’t mix well!
"  Heavyweight components are always

drawn on top of lightweight components.
!  Avoid mixing Swing UI components and

AWT components if possible

Windows and Containers

!  JWindow represents simple windows
"  …but no title bar, menus, min/max/close buttons!

!  JFrame represents application windows
"  Complete with title bar, menus, window-buttons
"  Typically use this for Java GUI applications

!  JPanel groups together UI components
"  A lightweight, general purpose container
"  Great for building up structure in your GUI!

!  Use add(...) method to add child-components
"  Child-components can also be containers, e.g. JPanel

Laying Out Components

!  Containers position/size child-components with layout managers
"  Call setLayout(LayoutManager lm) on the container
"  java.awt.LayoutManager is an interface

!  Many different layout managers
"  FlowLayout – arranges components line-by-line; wraps to next

line when current line is full
"  BoxLayout – arranges components in a single row or column
"  BorderLayout – can place a component in one of five regions:

NORTH, SOUTH, EAST, WEST, and CENTER
"  GridLayout – arranges components in a fixed-size 2D grid
"  GridBagLayout – very sophisticated layout manager
"  And several more! (See implementers of LayoutManager…)

# Default layout manager is FlowLayout

Events and Listeners

!  When something happens, UI widgets fire events
"  User clicks mouse on something
"  User presses some keys
"  Window is closed or minimized
"  User moves or drags mouse
"  etc.

!  To catch events, must implement event-listeners in
your program
"  Listeners are exposed as interfaces to implement
"  Contained in java.awt.event package
"  Typically named [Something]Listener

ActionListener Interface

!  Example: java.awt.event.ActionListener
"  One method to implement:

void actionPerformed(ActionEvent e)

"  ActionEvent contains details of what happened
!  What UI component reported the event
!  When the event occurred
!  Any modifier keys (Ctrl, Alt, Shift, etc.)
!  Other things too! (See API docs…)

"  ActionEvent is reported by most Swing components

Implementing ActionListener

!  Swing components provide a registration method:
addActionListener(ActionListener l)

!  Implement ActionListener:
public class ActionHandler implements ActionListener {
 ...
 public void actionPerformed(ActionEvent e) {
 ... // Do something clever.
 }
}

!  Register your listener:
ActionHandler handler = new ActionHandler();
JButton button = new JButton("Start");
button.addActionListener(handler);

Other AWT/Swing Listener Interfaces

!  MouseListener – mouse enter/exit/click events
!  MouseMotionListener – mouse move/drag

events
!  KeyListener – keyboard press/release events
!  FocusListener – component gets/loses focus
!  ComponentListener – component shown, hidden,

resized
!  WindowListener – window opened, closed,

maximized, minimized

Listeners and Adapters

!  Some listeners are more complicated:
"  MouseListener interface specifies these methods:

!  mouseEntered(), mouseExited()
!  mousePressed(), mouseReleased()
!  mouseClicked()

!  Frequently only want to implement one or two of these…
!  Java often provides adapters for event-listener interfaces
!  Example: java.awt.event.MouseAdapter

"  Implements MouseListener interface, among others
"  All provided implementations are no-ops
"  Derive your event-handler from MouseAdapter, and then

override just the methods you want to implement

Nested Classes in Java

!  Can declare a class within a class
"  Called a nested class
class Outer {
 /* A nested class */
 class Inner {
 ...
 }
}

"  When Outer.java is compiled, compiler
generates two files: Outer.class and
Outer$Inner.class

Nested Classes in Java (2)

!  The nested class is a member of the outer class,
and can have an access modifier
"  e.g. a private nested class cannot be referred to

directly from outside the outer class
!  The nested class can also be declared with or

without the static keyword
"  Has some dramatic impacts on how the nested class

can be used, and what it can do!
class Outer {
 static class StaticNested { ... }
 class NonStaticNested { ... }
}

Static Nested Classes

!  Static nested classes are simply related classes
“contained within” the outer class

!  Example: java.awt.geom.Rectangle2D
"  An abstract class that represents 2D rectangles

!  Contains two static nested classes:
"  Rectangle2D.Double derives from Rectangle2D,

and specifies coordinates of type double
"  Rectangle2D.Float is similar, but float coords

!  To use:
"  import java.awt.geom.Rectangle2D;
"  Refer to nested classes by Rectangle2D.Float

or Rectangle2D.Double

Non-static Nested Classes

!  Non-static nested classes are also called
inner classes

!  Like instance methods, inner classes must be
used in the context of a containing object!
"  They actually reference their containing object
"  They can directly access the containing object’s

fields and methods
!  Cannot create inner-class objects in a static

method on the outer class!
"  Can only create in instance methods

Inner Classes and Event Listeners

!  Inner classes are great for event-listeners!
"  Listeners often need to access application state
"  Inner class can even access private members of the

outer class
!  Also keeps outer class’ public interface clean

"  Don’t want to have a whole bunch of public listener
interface-methods exposed on outer class

!  When necessary, can also create multiple
inner-class objects associated with a single
outer-class object

Event Handler, Inner Class Style

public class MyApp {
 /** Current state of application. **/
 private boolean started;

 /** Handler for ActionEvents. **/
 private class ActionHandler implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 started = true;
 }
 }

 ...
 void initUI() {
 // Create button, then use inner class to handle events
 JButton button = new JButton("Start");
 button.addActionListener(new ActionHandler());
 }
}

