CS11 — Java

Fall 2014-2015
Lecture 3

Today’s Topics

Class inheritance

Abstract classes

Polymorphism

Introduction to Swing APl and event-handling
Nested and inner classes

Class Inheritance

A third of the “four big OOP concepts”

A class can extend another class to build on its
functionality
Terminology:

o Parent class, or superclass, or base class
o Child class, or subclass, or derived class

Child classes inherit all methods and fields within
parent class

o Can add new functionality
o Can also override parent-class methods

Class Inheritance (2)

Class inheritance models an “is-a” relationship
o Example class hierarchy:

Vehicle
L Wheeled Vehicle L Water Vehicle
L Dump Truck L Sailboat L Barge

The child class is a specialization of the parent class

Child class also has characteristics of parent class

o Can treat child class as if it were any parent-type
“A dump truck is a wheeled vehicle.”
“A sailboat is a vehicle.”
“A water vehicle is a vehicle.”

Class Inheritance (3)

Example class hierarchy:

Vehicle
L Wheeled Vehicle L Water Vehicle
L Dump Truck L Sailboat L Barge

Sibling types do not model an “is-a” relationship!

o These statements are clearly false:
“A dump truck is a water vehicle.”
“A wheeled vehicle is a barge.”

What about these statements?
“A vehicle is a dump truck.”
“A water vehicle is a sailboat.”

o Depends on the actual vehicle being considered!
Need to examine a specific vehicle to verify the statement

Example Class Hierarchy

The number classes in Java
java.lang.Object
L java.lang.Number
L java.lang.Integer
0 Integer “is a" Number, “is an” Object
0 Integer extends Number, which extends Object

o Integer inherits all methods that Object defines

boolean equals (Object o)
int hashCode ()

String toString()
Class getClass()

0 Integer also overrides some of these methods

Overriding Object. toString ()

Really useful idea, especially for debugging

Used in string concatenation
0 You type this:

String msg = "Point 1is " + pt;
o Compiler automatically does this:

String msg = "Point is " + pt.toString();
Simple to define:

@Override

public String toString() {
return " (" + xCoord + "," + yCoord + ")";

}

Classes and Objects

A class’ parent-class methods can be called
without any special syntax.

Integer intObj = new Integer (53);

Class ¢ = intObj.getClass(); // Get type info
0 Integer is also an Object — can call methods
declared and/or implemented on Object

Child class can also provide its own methods

System.out.println("Value is " + intObj.intValue())
0 Integer extends Object’s functionality
intValue () returns an int version of the Integer

Reterence Types

Every reference has a class-type associated with it

Object obj; // A reference of type Object

Integer val; // A reference of type Integer
The variable’s type dictates what is accessible
Example:

Object obj = new Integer (38);

System.out.println (obj.intValue()) ; COMPILE ERROR
o Compile error, because Object doesn’t define intvalue ()
0 intValue () is declared in Number class (parent of Integer)

o Even though obj refers to an Integer object, only the Object
methods are visible

Navigating the Hierarchy

Number

Number hierarchy is like this: | |

Integer Float Double

Moving down the hierarchy requires a run-time test.
Object obj = new Integer (453);

int i = ((Integer) obj).intValue(); // Cast obj

o You could also try this:
float £ = ((Float) obj).floatValue(); // Runtime error

This code compiles, but it will report an error at runtime
o Java can’t assume the actual object-type at compile time!
(Even when it's obvious to a human...)
o So, we have a runtime type-check, and a potential error.

What Child Classes Don’t Get

Child classes cannot access private
members in parent classes

protected access-modifier allows the child
class to access parent-class’ members
o Only available within the class, and to subclasses
0 Looser than private, but still not public!

Child classes also don’t inherit static fields
and methods

o They can be accessed, but they are not inherited

A Generic Task Class

public class Task ({
private String name;
private boolean done;

public Task (String taskName) ({
name = taskName;
done = false;

}

/** Just record that the task is done. */

public void doTask () {
done = true;

}

/** Report if the task is done or not. */

public boolean isDone () {
return done;

}

Making Usetul Tasks

Our Task class is very generic...
o ...S0 generic that it's nearly useless!

Extend Task class to provide useful tasks
public class FileUploadTask extends Task ({

public FileUploadTask () {
// Call parent-class constructor

super ("upload file");

}
o Parent-class constructors are not inherited!

o If parent class doesn’t have a default constructor, we must
explicitly call one in the child class, using super keyword

Overriding Parent-Class Methods

FileUploadTask should provide its own
iImplementation of doTask ()

public class FileUploadTask extends Task ({

/** Perform the file-upload operation. */
@Override
public void doTask() {

. // Open a connection, read a file, etc.

}
}

o Method'’s signature is same as parent-class’
method signature

o This overrides Task’'s implementation of doTask()

Polymorphism

Now we want to upload a file:
Task t = new FileUploadTask() ;
t.doTask () ;

o Which implementation of doTask () does this call?

In Java, all instance-methods are virtual

o Even though t is a Task reference, the FileUploadTask
iImplementation is called

o Reason: t refers to an object of type FileUploadTask
This is called polymorphism

o The fourth “Big OOP Concept”

o A statement’s behavior changes, depending on the type of
the objects involved

Calling Parent-Class Methods

Problem:
0 FileUploadTask.doTask () doesn't set done to true

o Also, done is private!

One solution:

0 FileUploadTask.doTask () implementation can call the
parent-class implementation:
/** Perform the file-upload operation. */

@QOverride
public void doTask() {
. // Open a connection, read file, etc.

// All done'!
super .doTask () ;

The Task Abstraction

Actually doesn’t make much sense for Task
to have an implementation of doTask ()

o Change Task to be an abstract class

o An abstract class declares a set of behaviors, but
only partially defines it.

Abstract classes cannot be instantiated

o Child classes must be provided, that implement
the missing functionality

o Example: FileUploadTask must provide an
implementation of doTask (), that uploads a file.

The New, Abstract Task Class

Our abstract Task class:
// A class that represents a generic task
public abstract class Task {
private String name;
private boolean done;

public Task (String taskName) ({
name taskName;
done false;

}

// Child classes implement this method.
public abstract wvoid doTask() ;

// Rest of class
}

Abstract classes can still have fields and non-abstract methods

The New FileUploadTask

FileUploadTask doesn't “override” doTask ()
o There’s nothing to override!
0 FileUploadTask implements doTask ()
Again, the signatures must match up
/** Implement doTask() to upload a file. */

public void doTask () {
. // Open a connection, read the file, etc.

}
o (Without the abstract modifier, of course!)

o Of course, we can’'t do super.doTask () anymore

Child class must provide an implementation of every
abstract parent-class method

o If not, child class must also be declared abstract.

Completing the Abstraction

How can a task be marked as done?
A simple solution: set done to be protected

Another good solution:

o Task can provide another protected method to do this:
protected void reportTaskDone () {
if (done) {
// Task was already done! Complain.

}

done = true;

}
o Now only child classes can report that the task is done

Which solution is more extensible?
o Might want to add other processing when a task is finished
o Can easily add this to reportTaskDone () later

Task References

You can’t instantiate the abstract Task class
Task t = new Task("send e-mail") ; COMPILE ERROR

o The implementation of Task is incomplete!

You can have a Task-reference
Task t = new FileUploadTask() ;

t.doTask () ; // Calls FileUploadTask.doTask ()
t = new SendEMailTask() ;
t.doTask () ; // Calls SendEMailTask.doTask ()

o The correct implementation of doTask () gets called
because of polymorphism

APls are made generic by using the base-class type

void enqueueTask (Task t) {
pendinglList.store(t) ;
}

Swing: A Quick Tour

First GUI framework in Java was the AWT
o Abstract Windowing Toolkit

o Could perform basic operations

o Not very pretty, or extensible

Java 1.2 introduced the Swing API

o Built on top of some AWT functionality

o Reimplemented many higher-level AWT classes
o Customizable look-and-feel

o Very extensible, feature-rich API

J (13

a A bit slower than AWT, since it's “Pure Java”

Swing Classes

Most Swing classes are in javax . swing package
(and some sub-packages)

Quite a few AWT classes are used by Swing!

o Events, event-handlers, geometry, images, drag-and-drop,
etc.

Swing Ul widgets derive from JComponent

o Represents any Ul component in Swing

0 JComponent derives from java.awt.Container

o Custom Swing components can also use JComponent as
their parent class

Heavyweight Components

AWT Ul components are “heavyweight”

o Each component has its own native graphics
resources

o Components don’t use “pure Java” code to
draw their graphics

Actually use operating-system calls
o Overlapping components overwrite each other

Lightweight Components

Swing Ul components are “lightweight”
o Components use only Java to draw themselves

o Native graphics resources are shared by Swing
components, as much as possible
o Example:

A popup menu fully within an app’s window is drawn
using that window’s resources
A popup menu extending outside an app’s window will
get its own window
o Swing can provide transparent regions more easily,
since components share graphics resources

Mixing AWT and Swing

Lightweight and heavyweight
components don't mix well!

0 Heavyweight components are always
drawn on top of lightweight components.

Avoid mixing Swing Ul components and
AWT components if possible

Windows and Containers

JWindow represents simple windows

o ...but no title bar, menus, min/max/close buttons!
JFrame represents application windows

o Complete with title bar, menus, window-buttons
o Typically use this for Java GUI applications
JPanel groups together Ul components

o A lightweight, general purpose container

o Great for building up structure in your GUI!

Use add (.. .) method to add child-components
o Child-components can also be containers, e.g. JPanel

Laying Out Components

Containers position/size child-components with layout managers
o Call setLayout (LayoutManager 1m) on the container

0 java.awt.LayoutManager is an interface

Many different layout managers

0 FlowLayout — arranges components line-by-line; wraps to next
line when current line is full

o BoxLayout — arranges components in a single row or column

o BorderLayout — can place a component in one of five regions:
NORTH, SOUTH, EAST, WEST, and CENTER

0 GridLayout — arranges components in a fixed-size 2D grid

0 GridBagLayout — very sophisticated layout manager

o And several more! (See implementers of LayoutManager...)
* Default layout manager is FlowLayout

Events and Listeners

When something happens, Ul widgets fire events
User clicks mouse on something

User presses some keys

Window is closed or minimized

User moves or drags mouse

etc.

To catch events, must implement event-listeners in
your program

o Listeners are exposed as interfaces to implement

o Contained in java.awt.event package

o Typically named [Something]Listener

L O 0 0O O

Actionlistener Interface

Example: java.awt.event.ActionListener

o One method to implement:
void actionPerformed (ActionEvent e)

0 ActionEvent contains details of what happened
What Ul component reported the event
When the event occurred
Any modifier keys (Ctrl, Alt, Shift, etc.)
Other things too! (See API docs...)
0 ActionEvent is reported by most Swing components

Implementing ActionListener

Swing components provide a registration method:
addActionlListener (ActionListener 1)

Implement ActionListener:

public class ActionHandler implements ActionListener ({

public void actionPerformed (ActionEvent e) {
// Do something clever.
}
}

Register your listener:
ActionHandler handler = new ActionHandler () ;
JButton button = new JButton("Start");
button.addActionListener (handler) ;

Other AWT/Swing Listener Interfaces

MouselListener — mouse enter/exit/click events

MouseMotionListener — mouse move/drag
events

KeyListener — keyboard press/release events
FocusListener — component gets/loses focus

ComponentListener — component shown, hidden,
resized

WindowListener — window opened, closed,
maximized, minimized

Listeners and Adapters

Some listeners are more complicated:

0 Mouselistener interface specifies these methods:
mouseEntered (), mouseExited()
mousePressed (), mouseReleased ()
mouseClicked ()

Frequently only want to implement one or two of these...
Java often provides adapters for event-listener interfaces

Example: java.awt.event.MouseAdapter
o Implements MouseListener interface, among others
o All provided implementations are no-ops

o Derive your event-handler from MouseAdapter, and then
override just the methods you want to implement

Nested Classes in Java

Can declare a class within a class

o Called a nested class
class Outer {
/* A nested class */
class Inner {

}
}

0 When Outer. java is compiled, compiler
generates two files: Outer.class and
Outer$Inner.class

Nested Classes in Java (2)

The nested class is a member of the outer class,
and can have an access modifier

0 e.g. a private nested class cannot be referred to
directly from outside the outer class

The nested class can also be declared with or
without the static keyword

o Has some dramatic impacts on how the nested class
can be used, and what it can do!
class Outer {
static class StaticNested { ... }
class NonStaticNested { ... }

Static Nested Classes

Static nested classes are simply related classes
“‘contained within” the outer class

Example: java.awt.geom.Rectangle2D

o An abstract class that represents 2D rectangles
Contains two static nested classes:

0 Rectangle2D.Double derives from Rectangle2D,
and specifies coordinates of type double

0 Rectangle2D.Float is similar, but £loat coords
To use:
0 import java.awt.geom.Rectangle2D;

o Refer to nested classes by Rectangle2D.Float
or Rectangle2D.Double

Non-static Nested Classes

Non-static nested classes are also called
Inner classes

Like instance methods, inner classes must be
used in the context of a containing object!
o They actually reference their containing object

o They can directly access the containing object’s
fields and methods

Cannot create inner-class objects in a static
method on the outer class!
o Can only create in instance methods

Inner Classes and Event Listeners

Inner classes are great for event-listeners!

o Listeners often need to access application state

o Inner class can even access private members of the
outer class

Also keeps outer class’ public interface clean

o Don’t want to have a whole bunch of public listener
interface-methods exposed on outer class

When necessary, can also create multiple
iInner-class objects associated with a single
outer-class object

Event Handler, Inner Class Style

public class MyApp {

&

/** Current state of application. **/
private boolean started;

/** Handler for ActionEvents. **/
private class ActionHandler implements ActionListener ({
public void actionPerformed (ActionEvent e) ({
started = true;

}

void initUI() {
// Create button, then use inner class to handle events
JButton button = new JButton("Start");
button.addActionListener (new ActionHandler()) ;

