
CS11 – Java

Winter 2014-2015
Lecture 2

Today’s Topics

!  Packages
!  Interfaces
!  Collection classes

Java Packages

!  Classes can be grouped into packages
"  A package is a collection of related types

!  Packages provide namespace management
"  Can’t have two classes with same name in same package
"  Classes can have the same name, if they are in different

packages
!  By default, a class is in the “default package”

"  Default package has no name!
!  Use package keyword to specify different package

package cs11;
"  Must be first statement in your .java file
"  Affects where .java and .class files must be placed!
"  For now, don’t specify package keyword for your classes

Using Classes in Packages

!  If a class is in a package, one of three choices:
"  Must refer to class with qualified name:

java.util.ArrayList myList =
 new java.util.ArrayList();

"  Must import the class itself:
import java.util.ArrayList;
...
ArrayList myList = new ArrayList();

"  Must import entire package:
import java.util.*;
...
ArrayList myList = new ArrayList();

The Java API and Packages

!  All Java API classes are in packages
!  Classes in java.lang are automatically imported

"  Don’t need to explicitly import anything in java.lang

!  To import Java classes not in java.lang package:
import java.util.ArrayList;
import java.util.HashSet;
...

"  Or:
import java.util.*;

!  Importing a package is not recursive!
"  Importing java.* won’t get you anywhere.

Sets of Behaviors

!  Frequently have situations where:
"  A single, well-defined set of behaviors…
"  …with many different possible implementations

!  Interfaces are similar to classes, but only
contain method signatures with no bodies
"  They only declare behavior; they don’t define it
"  No method implementations, no instance fields

!  A class can implement multiple interfaces
"  Called multiple interface inheritance in Java
"  (Java doesn’t support multiple class inheritance)

Interfaces

!  Interfaces “define a protocol of communication
between two objects.”
"  The interface declares a set of methods (behaviors)

!  A class implements an interface to denote that it
provides that set of behaviors

!  Code other objects against the interface type
"  Isolates them from the implementation details specific

to the implementing object

Declaring Interfaces

!  Interfaces are declared like classes
/** A generic component of a simulation. */
public interface SimComponent {
 /** Initialize the component. */
 void init(SimConfig sconf);

 /** Advance the simulation. */
 void simulate(double timestep);

 /** End the simulation. */
 void shutdown();
}

"  Goes in SimComponent.java
"  No method access-modifiers! Access is public.

Interfaces and Classes

!  Classes can implement interfaces
"  Allows instances to be treated as the interface type
"  A class can implement any number of interfaces
"  A simpler, cleaner version of multiple inheritance

!  Interfaces themselves cannot be instantiated
"  They must be implemented by a class,

and then the class is instantiated
!  Variables can be an interface type, just like

they can be a class type

Implementing Interfaces

!  When a class implements the interface, it must declare the
methods as public.

public class PhysicsEngine implements SimComponent {
 ...
 public void init(SimConfig simConf) {
 ... // Do some stuff
 }
 public void simulate(double timestep) {
 ... // Do other stuff
 }
 ...
}

"  Anyone can call the class’ implementation of interface,
because it’s public.

Using Interfaces

!  Use interfaces to decouple program components
"  …especially when a component may be implemented in

multiple ways!
"  Other components interact with the general interface type,

not specific implementations

!  Example: storing a user’s calendar of events
public interface CalendarStorage {
 // Load a user's calendar of events
 Calendar loadCalendar(String username);

 // Save the user's calendar to persistent storage
 void saveCalendar(String username, Calendar c);
}

Using Interfaces (2)

!  Provide multiple implementations
"  Store calendars in local data files:

public class FileCalendarStorage
 implements CalendarStorage {
 ...
}

"  Store calendars on a remote server:
public class RemoteCalendarStorage
 implements CalendarStorage {
 ...
}

!  Write code to the interface, not implementations
CalendarStorage calStore = openCalendarStorage();
Calendar cal = calStore.loadCalendar(username);

Using Interfaces (3)

!  Can change implementation details as needed…
"  …as long as interface definition stays the same.

!  If interface’s implementation is large and complex:
"  Other code can use a “stubbed-out” implementation of the

interface, until the full version is finished
public class FakeCalendarStorage
 implements CalendarStorage {
 public Calendar loadCalendar(String username) {
 return new Calendar(username); // Blank calendar
 }
 public void saveCalendar(String username,Calendar c) {
 // Do nothing!
 }
}

"  Allows software development of dependent components
to proceed in parallel

Extending Interfaces

!  Can extend interfaces:
/** A sim-component that runs in a network. */
public interface DistributedSimComponent
 extends SimComponent {

 /** Establish connection to server. */
 void connect(String hostname);

 /** Disconnect from server. */
 void disconnect();
}

"  This interface inherits all SimComponent method
declarations

"  Again, they are all public access

Java Collections

!  Very powerful set of classes for managing
collections of objects
"  Introduced in Java 1.2

!  Provides:
"  Interfaces specifying different kinds of collections
"  Implementations with different characteristics
"  Iterators for traversing a collection’s contents
"  Some common algorithms for collections

!  Very useful, but nowhere near the power and
flexibility of C++ STL

Why Provide Collection Classes?

!  Reduces programming effort
"  Most programs need collections of some sort
"  Makes language more appealing for development

!  Standardized interfaces and features
"  Reduces learning requirements
"  Facilitates interoperability between separate APIs

!  Facilitates fast and correct programs
"  Java API provides high-performance, efficient,

correct implementations for programmers to use

Collection Interfaces

!  Generic collection interfaces defined in java.util
"  Defines basic functionality for each kind of collection

!  Collection – generic “bag of objects”
!  List – linear sequence of items, accessed by index
!  Queue – linear sequence of items “for processing”

"  Can add an item to the queue
"  Can “get the next item” from the queue
"  What is “next” depends on queue implementation

!  Set – a collection with no duplicate elements
!  Map – associates values with unique keys

More Collection Interfaces

!  A few more collection interfaces:
"  SortedSet (extends Set)
"  SortedMap (extends Map)
"  These guarantee iteration over elements in a

particular order
!  Requires elements to be comparable

"  Must be able to say an element is “less than” or
“greater than” another element

"  Provide a total ordering of elements used with the
collection

Common Collection Operations

!  Collections typically provide these operations:
"  add(Object o) – add an object to the collection
"  remove(Object o) – remove the object
"  clear() – remove all objects from collection
"  size() – returns a count of objects in collection
"  isEmpty() – returns true if collection is empty
"  iterator() – traverse contents of collection

!  Some operations are optional
"  Throws UnsupportedOperationException if

not supported by a specific implementation
!  Some operations are slower/faster

Collection Implementations

!  Multiple implementations of each interface
"  All provide same basic functionality
"  Different storage requirements
"  Different performance characteristics
"  Sometimes other enhancements too

!  e.g. additional operations not part of the interface

!  Java API Documentation gives the details!
"  See interface API Docs for list of implementers
"  Read API Docs of implementations for

performance and storage details

List Implementations

!  LinkedList – doubly-linked list
"  Each node has reference to previous and next nodes
"  O(N)-time element indexing
"  Constant-time append/prepend/insert
"  Nodes use extra space (previous/next references, etc.)
"  Best for when list grows/shrinks frequently over time
"  Has extra functions for get/remove first/last elements

!  ArrayList – stores elements in an array
"  Constant-time element indexing
"  Append is usually constant-time
"  O(N)-time prepend/insert
"  Best for when list doesn’t change much over time
"  Has extra functions for turning into a simple array

Set Implementations

!  HashSet
"  Elements are grouped into “buckets” based on a hash code
"  Constant-time add/remove operations
"  Constant-time “contains” test
"  Elements are stored in no particular order
"  Elements must provide a hash function

!  TreeSet
"  Elements are kept in sorted order

!  Stored internally in a balanced tree
"  O(log(N))-time add/remove operations
"  O(log(N))-time “contains” test
"  Elements must be comparable

Map Implementations

!  Very similar to Set implementations
"  These are associative containers
"  Keys are used to access values stored in maps
"  Each key appears only once

!  (No multiset/multimap support in Java collections)
!  HashMap

"  Keys are hashed
"  Fast lookups, but random ordering

!  TreeMap
"  Keys are sorted
"  Slower lookups, but kept in sorted order by key

Collections and Java 1.5 Generics

!  Up to Java 1.4, collections only stored Objects
LinkedList points = new LinkedList();
points.add(new Point(3, 5));
Point p = (Point) points.get(0);

"  Casting everything gets annoying
"  Could add non-Point objects to points collection too!

!  Java 1.5 introduces generics
"  A class or interface can take other types as parameters

LinkedList<Point> points = new LinkedList<Point>();
points.add(new Point(3, 5));
Point p = points.get(0);

"  No more need for casting
"  Can only add Point objects to points too
"  Syntactic sugar, but quite useful!

Using Collections

!  Lists and sets are easy:
HashSet<String> wordList = new HashSet<String>();
LinkedList<Point> waypoints = new LinkedList<Point>();

"  Element type must appear in both variable declaration
and in new-expression

!  Maps are more verbose:
TreeMap<String, WordDefinition> dictionary =
 new TreeMap<String, WordDefinition>();

"  First type is key type, second is the value type
!  Java 7 introduces a simplified syntax:

TreeMap<String,WordDefinition> dictionary = new TreeMap<>();

"  Parameters for instantiation are inferred from variable

Iteration Over Collections

!  Often want to iterate over values in collection
!  ArrayList collections are easy:

ArrayList<String> quotes;
...
for (int i = 0; i < quotes.size(); i++)
 System.out.println(quotes.get(i));

"  Impossible/undesirable for other collections!
!  Iterators are used to traverse contents
!  Iterator is another simple interface:

"  hasNext() – Returns true if can call next()
"  next() – Returns next element in the collection

!  ListIterator extends Iterator
"  Provides many additional features over Iterator

Using Iterators

!  Collections provide an iterator() method
"  Returns an iterator for traversing the collection

!  Example:
HashSet<Player> players;
...
Iterator<Player> iter = players.iterator();
while (iter.hasNext()) {
 Player p = iter.next();
 ... // Do something with p
}

"  Iterators also use generics
"  Can use iterator to delete current element, etc.

Java 1.5 Enhanced For-Loop Syntax

!  Setting up and using an iterator is annoying
!  Java 1.5 introduced syntactic sugar for this:

for (Player p : players) {
 ... // Do something with p
}

"  Can’t access the actual iterator used in the loop
"  Best for simple scans over a collection’s contents

!  Can also use enhanced for-loop syntax with arrays:
float sum(float[] values) {
 float result = 0.0f;
 for (float val : values)
 result += val;
 return result;
}

Collection Algorithms

!  java.util.Collections class provides some
common algorithms
"  …not to be confused with the Collection interface
"  Algorithms are provided as static functions
"  Implementations are fast, efficient, and generic

!  Example: sorting
LinkedList<Product> groceries;
...
Collections.sort(groceries);

"  Collection is sorted in-place: groceries is changed
!  Read Java API Docs for more details

"  Also see Arrays class for array algorithms

Collection Elements

!  Collection elements may require certain capabilities
!  List elements don’t need anything special

"  …unless contains(), remove(), etc. are used!
"  Then, elements should provide a correct equals()

implementation
!  Requirements for equals():

"  a.equals(a) returns true
"  a.equals(b) same as b.equals(a)
"  If a.equals(b) is true and b.equals(c) is true, then
a.equals(c) is also true

"  a.equals(null) returns false

Set Elements, Map Keys

!  Sets and maps require special features
"  Sets require these operations on set-elements
"  Maps require these operations on the keys

!  equals() must definitely work correctly
!  TreeSet, TreeMap require sorting capability

"  Element or key class must implement
java.lang.Comparable interface

"  Or, an appropriate implementation of
java.util.Comparator must be provided

!  HashSet, HashMap require hashing capability
"  Element or key class must provide a good implementation

of Object.hashCode()

Object.hashCode()

!  java.lang.Object has a hashCode() method
public int hashCode()

"  Compute a hash code based on object’s values
"  hashCode() is used by HashSet, HashMap, etc.

!  Rule 1:
"  If a.equals(b) then their hash codes must be the same!
"  OK for two non-equal objects to have the same hash code

!  “Same hash-codes” just means “they might be equal”
!  Rule 2:

"  If you override equals() on a class then you should also
override hashCode()!

"  (See Rule 1)

Implementing hashCode()

!  Is this a correct implementation?
public int hashCode() {
 return 42;
}

"  It satisfies the rules, so technically yes…
"  In practice, will cause programs to be very inefficient

!  Hash fn. should generate a wide range of values
"  Specifically, should produce a uniform distribution of values
"  Facilitates most efficient operation of hash tables
"  Requirement is that equal objects must produce identical

hash values…
"  Also good if unequal objects produce different hash values

Implementing hashCode() (2)

!  If a field is included in equals() comparison,
should also include it in the hash code

!  Combine individual values into a hash code:
int hashCode() {
 int result = 17; // Some prime value

 // Use another prime value to combine
 result = 37 * result + field1.hashCode();
 result = 37 * result + field2.hashCode();
 ...
 return result;
}

More Hash-Code Hints

!  A few more basic hints:
"  If field is a boolean, use 0 or 1 for hash code
"  If field is an integer type, cast value to int
"  If field is a non-array object type:

!  Call the object’s hashCode() function, or use 0 for null
"  If field is an array:

!  Include every array-element into final hash value!
!  (Arrays already do this for you – see prev. point)

"  See Effective Java, Item 8 for more guidelines!
!  If computing the hash is expensive, cache it.

"  Must recompute hash value if object changes!

Comparing and Ordering Objects

!  Objects implement java.lang.Comparable<T> interface to
allow them to be ordered

public int compareTo(T obj)

!  Returns a value that imposes an order:
"  result < 0 means this is less than obj
"  result == 0 means this is “same as” obj
"  result > 0 means this is greater than obj

!  This defines the natural ordering of a class
"  i.e. the “usual” or “most reasonable” sort-order

!  Natural ordering should be consistent with equals()
"  a.compareTo(b) returns 0 only when a.equals(b) is true

!  Implement this interface correctly for using TreeSet / TreeMap

Alternate Orderings

!  Can provide extra comparison functions
"  Provide a separate object that implements
java.util.Comparator<T> interface

"  Simple interface:
int compare(T o1, T o2)

!  Sorted collections, sort algorithms can also take a
comparator object
"  Allows sorting by all kinds of things!

!  Comparator impls are typically nested classes
"  e.g. Player class could provide a ScoreComparator

nested class

Implmenting Interfaces with Generics

!  Java interface type: java.lang.Comparable<T>
"  int compareTo(T obj)

!  When you implement interfaces like this, you specify
what T is in your code:
class Player implements Comparable<Player> {
 ...
 int compareTo(Player obj) {
 ...
 }
}

!  Similar approach with java.util.Comparator

Lab 2 – A* Path-Finding Algorithm

!  A* path-finding algorithm is used extensively
for navigating maps with obstacles
"  Finds an optimal path from start to finish, if a path

exists
!  Example:

A* Implementation

!  A* algorithm requires two collections
"  A collection of “open waypoints” to be considered
"  Another collection of “closed waypoints” that have

already been examined
!  Your tasks:

"  Provide equals() and hashCode() impls. for
Location class

"  Complete the AStarState class, which manages
open and closed waypoints for A* algorithm

"  Play with the fun A* user interface ☺

