CS11 — Java

Winter 2014-2015
Lecture 1

Welcome!

[Lectures
o Slides posted on CS11 website
o http://courses.cms.caltech.edu/cs11

/ Lab Assignments
o Made available around Friday
o Due one week later — Friday, 12 noon

Assignments take a bit more than 3 hours per
week, on average

Assignments and Grading

Labs are given a score in range 0..3, and feedback
o If your code is broken, you will have to fix it.
o If your code is sloppy, you will have to clean it up.

Must receive 75% of the possible points to pass

o With 7 assignments, 21 points available =»
must score 15.5 or better to pass

o With 8 assignments, 24 points available =
must score 18 or better to pass

o Can definitely pass without completing all labs

Please turn in assignments on time
o You will lose 0.5 points per day on late assignments

L.ab Submissions

Using csman homework submission website:
o https://csman.cms.caltech.edu

o Many useful features, such as email notifications
Must have a CS cluster account to submit

o csman authenticates against CS cluster account

CS cluster account also great for doing labs!

o Can easily do the labs on your own machine,
since Java works the same anywhere

o Just make sure you have Java 1.7+

Course Texts

No textbook is required
All necessary information is available online

o Extensive Java APl documentation
o Java tutorials

A Briet History of Java

Created by Sun Microsystems starting late '90s
o Intended for embedded-systems programming

o Primary goal was improving on C++

o Renamed to Java in 1994

Java 1.0 released in 1995
o Versions 1.1,1.2,1.3. 1.4

Numbering scheme changed with Java 5.0
o (SDK/development version is still called 1.5)

Current version is Java 8

A Briet History of Java (2)

Language, and standard libraries, have
expanded dramatically over the years

o Java 6 released in late 2006 — introduced many new
language features, new APIs

o Java 7 released in mid 2011

Java platform was made (mostly) open-source
by Sun on May 2007

o Allows Java platform to be ported to, and
customized for, additional hardware platforms

In Jan 2010, Oracle acquired Sun
o Caused significant concern about future of Java

Design Goals of Java Language

Simple and familiar
o Based on C/C++, but with many subtleties removed

Object-oriented

o Well suited to distributed systems
Architecture-neutral

o Both source code and binaries are portable
Dynamic loading and binding

o Minimizes recompilations, and facilitates modularity!

Secure
o Class verification, code signing, permissions

Multithreaded

o Language specifies platform-neutral threading support

How Java Does Its Thing

Source code goes into . java files.
One top-level class per file.
Class’ name dictates file name.

Example: HelloWorldApp.java

// Display a message and then exit.
public class HelloWorldApp {
public static void main (String[] args) {
System.out.println("Hello, world!");

}
}

How Java Does Its Thing (2)

Java compiler takes . java files and compiles them
into platform-independent . class files.
0 javac HelloWorldApp.java

=>» produces HelloWorldApp.class

o These class files contain byte-codes — instructions
for the Java Virtual Machine (JVM).

Byte-codes for our example:

public static void main(java.lang.String[])

0: getstatic #2; //Field java/lang/System.out

3: ldc #3; //String "Hello, world!"

5: invokevirtual #4; //Method java/io/PrintStream.println
8: return

How Java Does Its Thing (3)

Run the program with a Java Virtual Machine (JVM)

o The JVM takes a class name, not the class’ filename
> java HelloWorldApp

Hello, world!

The jawva program implements the JVM for a
specific platform

o Can run Java on any platform with a JVM implementation.
(Windows, Linux, Solaris, MacOS X, ...)

Some JVMs improve performance by compiling Java
byte-codes into native machine code
o Called “just-in-time” compilation, or JIT for short

Java Comments

Java comments are just like C++ comments
/*
* This method prints hello world.
*/
public static void main(String[] args) {
// This next part is tricky...

System.out.println("Hello, world!"); // phew!
}

o Block comments can span multiple lines
o Single-line comments extend to end of line

Use block comments before classes/functions
Use single-line comments within functions

Java Data Types

Primitive Types
0 boolean values are true or false
0 char 16-bit unsigned integer
(for Unicode characters)
0 byte 8-bit signed integer
0 int 32-bit signed integer
0 long 64-bit signed integer
a0 float 32-bit signed floating-point value
0 double 64-bit signed floating-point value

More Java Data Types

Reference Types

o Refers to an object (not a primitive type)

o Can be null if the reference refers to nothing
o Examples: String, Integer

In Java, arrays are also reference types
int[] numArray; // preferred!

int numArray|[]; // also works

o More on arrays in a few weeks!

Notes on Java Literals

Boolean is simply true or false
Integer values are straightforward

0 int i = 17;

Long values use “L” suffix:

0 long secondsInYear = 31556926L;
o Avoid lower-case “I” — looks like 1 in many fonts...

Default type of a decimal value is double
o double pi = 3.14159265358979323;

Float literal uses “F” suffix:
o float goldenRatio = 1.618f;
o In this case, either “F” or “f" is fine.

Java Character and String Literals

Character literals can be single-quoted characters,
or numbers between 0 and 65535

char capA = 'A'; // preferred

char capA = 65; // harder to maintain

String literals are double-quoted

String sandwichType = "pastrami'";

Special characters must be escaped:
String msg = "He said, \"Java is neat!\"";

o Most useful special characters:
\t =tab \r = carriage return \n = new line
\\ = backslash \' = single quote \" = double quote

Java Names and Naming Conventions

Names must start with a letter, and can include only
letters and digits

a _and $ are also considered “letters” in Java
o Don’t use $ - used by compiler for auto-generated names

Capitalization is very important in Java coding style

o Fields and methods should follow camelCase naming
convention

o Classes and interfaces should follow UpperCamelCase
naming convention

o Package names should be all lowercase

Java has a number of industry-wide conventions
o Definitely want to learn them and follow them...

2 You must follow them in CS11 Java.

Java Variables and Initial Values

Java variable declarations are like C/C++
int i;
boolean err = false, done;

String name = "Donnie";

Local variables don’t have default initial values!
int 1i;
i=1i4+1;

= Compile-time error:
variable i1 might not have been initialized

o This is an example of Java's focus on correctness
o C or C++ would compile this code without errors

Primitive and Reference Variables

Difference between primitive and reference types is
where the value is actually stored

Primitive variables:

int § = i; 3 20
o Each variable stores its own value
Reference variables: String object

- | 7

" (L
String sl = "Java!"; si _,/////' Java’
s2 *—

String s2 = sl;
o Value of reference variables is stored in main memory
o Reference variables can refer to the same object

Java Operators

Same set of operators as C and C++
o Simple arithmetic: + - * /| %

o Compound assignment: += -= *= /= efc.
o Increment/decrement: ++ -- (pre and post)
int 1 = 5;
int j = ++i; // 5 =6, i=6
int k = i++; // k=6, i=71
o Comparisons: == = > >= < <=

Note: these operations produce boolean values!
In Java, no type can be cast to boolean (including int)
Also, boolean cannot be cast to any other type

Logical Boolean Operators

Again, same as C/C++: && || !
o Logical AND, logical OR, and logical NOT.

These operators require boolean values, and
produce boolean values.

Lazy evaluation:

o For example: name '= null && name.equals ("Donnie")
name.equals(...) only evaluated if name '= null
o Conversely: name == null || !'name.equals("Donnie")

Precedence order: ' && ||

String Operators

String concatenation also uses + operator
public static void main(String[] args) {
String name = "Donnie";
System.out.println("Hello " + name);

}

At least one operand must be a String for + to do
string-concatenation.
o+ operator is evaluated left-to-right

int 1 = 5;

int j = 4;

System.out.println("i = " + i); // Prints "i = 5"
System.out.println(i + j); // Prints "9"
System.out.println("i + j =" + i + j); // "i + j = 54"

System.out.println(i + j + " =41 + j"); // "9 =i + "

Flow Control in Java

Flow-control statements nearly identical to C/C++

if (cond) while (cond)
statement; statement,

else if (cond)
statement; do

else statement;
statement; while (cond) ;

Difference: cond must produce boolean value!

Blocks of statements are enclosed with curly-braces
{ },justlike in C/C++

if (cond) {
statementl;
statement?2;

}

Java For-Loops

For loops are also very similar to C++
o Initialize (and possibly declare) one or more looping variables
o Test some condition before each iteration of the loop

o Apply one or more updates to the looping variable(s)
for (init; condition; update) statement;
for (init; condition; update) {
statementl;

}
Equivalent to while loops, but more compact.

int 1 = 1;

while (i <= 10) { [:::::i>> for (1 = 1; i <= 10; i++)
sum += 1i; sum += i;

i++;
}

More For-Loops

Can specify multiple initial values:
int i, sum;
for (i =1, sum = 0; i <= 10; i++)
sum += i;

Can declare loop variables in for-loop:
int sum = 0;
for (int 1 = 1; 1 <= 10; i++)
sum += 1i;
o In this example, i is only visible within the for-loop
o The scope of i is within the for-loop.

Even Mote For-Loops

Can specify multiple update operations:
int sum = 0;
for (int i = 1; i <= 10; sum += i, i++) /*nothing*/;

o Document that the for-loop doesn’t need a body!

Even more compact:

int sum = 0;
for (int i = 1; i <= 10; sum += i++) /* nothing */ ;

o Difficult to maintain! Best to be avoided.

Java Methods — A Briet Overview

public static void main(String[] args)

S/

Access Method Return Method Parameter List
Modifier Modifier Type Name

Method Signature

Methods return a value of the specified type.
Or they return no value, indicated by void keyword.

Methods can accept any number of arguments.
o “No arguments” is indicated with empty parens (), not void.

A method’s signature includes its name and its parameter-list.

Modifiers will be covered in a bit...

Printing in Java

System.out.println("Hello!");

Many flavors:

System.out.println (String x)
System.out.println (boolean x)
System.out.println (char x)
System.out.println (float x)
System.out.println (int x)
System.out.println (Object x)
System.out.println ()

o and a few more...

These are overloaded methods.
o Same name, but different signature.

Java Console 10

System. out is the standard output stream

System.err Is the standard error stream
o Use this to report errors when bad things happen.

System. in is the standard input stream
o We will use this this week.

System.out.println(..) goes to next line
Use System.out.print (..) to stay on same line

A Note About Class Names

Java classes can be grouped into packages
o This is optional, but typically very helpful!
o Packages form a hierarchy

packagel .package2.ClassName

o Package names are typically all lower-case
o Naming rules are same as variable names.
o Example: java.awt.event.MouseEvent

More details on this later!

Terminology: Classes and Objects

Java is entirely object-oriented programming
(OOP) language

o Programs are entirely composed of classes
Obijects are a tight pairing of two things:

o State — a number of related data values

o Behavior — code that acts on those data values in
coherent ways

A class is a “blueprint” for objects

o The class defines the state and behavior of
objects of that class

o Actually defines a new type in the language

Terminology: Fields and Methods

A class is comprised of members

Fields are variables associated with the class.
o They store the class’ state.

Methods are operations that the class can perform.
o A class’ set of methods specifies its behavior
o The actual code for a method is its implementation

o These methods generally (but not always) involve the class’
fields as well

Special Methods

Constructors create new instances of a class.

o Can take arguments, but not required. No return value.
o All classes have at least one constructor.

Accessors allow internal data to be retrieved.
o Provides control over how data is exposed.

Mutators allow internal data to be modified.

o Provides control over how and when changes can be
made.

No destructors in Java!
Not all classes have accessors and mutators.

. . Ke
Abstraction and Encapsulation =Congo?

0]
nCeDIs

Abstraction:
o Present a clean, simplified interface

o Hide unnecessary detail from users of the class
(e.g. implementation details)
They usually don’t care about these details!
Let them concentrate on the problem they are solving.

Encapsulation:

o Allow an object to protect its internal state from
external access and modification

o The object itself governs all internal state-changes
Methods can ensure only valid state changes

Access-Modifiers

Can be used on classes, methods and fields

Four access modifiers in Java

0 public — Anybody can access it

o private — Only the class itself can access it

0 protected — We'll get to this later...

o Default access-level (if you don’t specify anything)
Called “package-private” access

Protect implementation details by using

access modifiers in your code!

public class Point2d {
// Coordinates
private double xCoord;

private double yCoord;

/** Two-argument constructor. **/
public Point2d (double x, double y) {
xCoord = x;
yCoord = y;
}

/** Default constructor; initializes to (0, 0). **/

public Point2d () {
// Call 2-argument constructor
this (0, O0);

}

public double getX() { return xCoord;
public double getY () { return yCoord;

public void setX(double x) { xCoord
public void setY (double y) { yCoord

} // Accessors

}

X,
A

} // Mutators
}

Java Method Naming Conventions

Java accessors usually start with get

double getX()
double getY ()

Java mutators usually start with set

void setX(double)
void setY (double)

Accessors that return boolean often start with is

boolean isRunning ()
boolean isLoaded()

(1Pl

o Exceptions are allowed when “is” doesn’t make sense:
boolean contains (Object)
boolean intersects (Set)

Using the Point

Create a new Point2d object using the new
operator

Point2d pl = new Point2d();
Point2d p2 new Point2d(3.04, -5.612);

Call methods on the Point2d objects
pl.setX(15.1);
pl.setY (12.67);

System.out.println("p2 = (" + p2.getX() +
H," + P2.getY() + ")");

Objects and References

What are pl and p2 ?

Point2d pl = new Point2d();
Point2d p2 = new Point2d(3.04, -5.612);

o They are references to Point2d objects
o They are not objects themselves

Juggling references:
Point2d p3 = pl; // Still only two objects
pl = null; // Both objects still reachable
P2 = null; // One object isn't reachable!

JVM tracks when objects are no longer reachable
o “Garbage collection”

Object Method-Arguments in Java

What happens when you call a function with

an object argument?
public void printPoint (Point2d p)

Remember, p is a reference to the object

Reference is copied into p, but the Point2d
object that it refers to is not

Side-effects and funky bugs can easily occur!

Passing Objects in Java

void main(String[] args) ({

Point2d a =
new Point2d (3.1, 2.4);

printPoint (a) ;

}

xCoord

3.1

yCoord

24

void printPoint (Point2d p) {

System.out.println(p.getX() +
", + p.get¥());
p.setX(5.7); // 22?2

Passing Objects in Java (2)

void main(String[] args) ({

Point2d a =
new Point2d (3.1, 2.4);

printPoint (a) ;

}

a

void printPoint (Point2d p) {

System.out.println(p.getX() +
"," + p.get¥());

p.setX(5.7); // affects a

p = new Point2d(-6.9, 0.7); // 2°2°?

xCoord

5.7

yCoord

24

Passing Objects in Java (3)

void main(String[] args) ({

Point2d a =
new Point2d (3.1, 2.4);

printPoint (a) ;

void printPoint (Point2d p) {
System.out.println(p.getX() +
", + p.get¥());
p.setX(5.7); // affects a
P = new Point2d(-6.9, 0.7);
p.setY(-2.1); // 2727

a

xCoord 5.7
yCoord 24
xCoord -6.9
yCoord 0.7

Passing Objects in Java (4)

void main(String[] args) ({

Point2d a =
new Point2d (3.1, 2.4);

printPoint (a) ;

void printPoint (Point2d p) {
System.out.println(p.getX() +
"," + p.get¥());
p.setX(5.7); // affects a
P = new Point2d(-6.9, 0.7);
p.setY¥(-2.1); // local only

a

xCoord 5.7
yCoord 24
xCoord -6.9
yCoord -2.1

The Moral

Be very careful with object-references

o If a method accidentally changes an object, it can
be very tricky to track down.

Where reasonable, make objects immutable
o Java has no equivalent to C++ const keyword!

o An object is immutable if it provides no mutators
Set object’s state at construction time
Don’t provide any way to change the state

Method Magic

Most methods have an implicit parameter this
o this is a reference to the object being called

Implicitly used when object fields or methods are
accessed inside another method

public double getX() {
return xCoord; // Same as "return this.xCoord;"

}

public String toString() {
// Same as "this.getX ()" and "this.getY ()"
return " (" + getX() + " " + get¥() + ")";

}

Method Magic o

Can also use this to resolve ambiguities

void setX(double xCoord) {
// xCoord is the parameter
// this.xCoord is the object's field

this.xCoord = xCoord;

}

Not an uncommon approach for mutators...
o Argument name is same as field name

In general, avoid unnecessary ambiguities!
o Can lead to very subtle bugs

Static Methods

Some methods do not require a specific object

o Called “static methods,” or “class methods.”
public static double atan2 (double y, double x);

o Static methods can’t use this reference
Method isn’t called on a specific object!

0 Specify ClassName .methodName ()
Non-static methods called “instance methods”

java.lang.Math has only static methods
double tangent = Math.atan2 (yComp, xComp) ;

Equality 1n Java

Primitive types use == the way you would expect.

For reference types, == compares the references
themselves!

Point2d pl = new Point2d (3, 5);
Point2d p2 = new Point2d (3, 5);
Point2d p3 = pl;

o Points p1 and p3 are the same object

pl == p3is true

pl == p2is false, even though values are the same
Use objl.equals (obj2) to test value-equality

o Corollary: When you write classes, provide a reasonable
implementation of the equals () method.

The equals () Method

Signature:
public boolean equals (Object obj)

Returns true if obj is “equal to” this object
o Depends on what your class represents!
o If obj is null, the answer is always “not equal”

Note that ob4j is a generic Object reference
o It could be any reference-type! Check that too.
0 The instanceof keyword lets you do this

Does equals () Make Sense?

Reflexive:

0 a.equals(a) should return true

Symmetric:

0 a.equals (b) should be the same as b.equals (a)
o This can be tricky sometimes...

Transitive:

o Ifa.equals (b) is true and b.equals (c) is true, then
a.equals (c) should also be true

Nulls:

0 a.equals (null) should be false

Are These Points Equal?

@Override
public boolean equals (Object obj) {
// Is obj a Point2d?
if (obj instanceof Point2d) {
// Cast other object to Point2d type,
// then compare.
Point2d other = (Point2d) obj;
if (xCoord == other.getX() &&
yCoord == other.getY¥()) {
return true;

}

// If we got here then they're not equal.
return false;

The instanceof Operator

Use this to test an object’s type — its class

Defined to return false if the reference is null

o This is why we don’t need to check if the incoming
object-reference is null.

Why equals (Object) -

Classes can derive from other classes

o Child class inherits all fields/methods of the parent class

o Allows hierarchies of classes to be defined

o Child class can be treated as its parent, since it has (at
least) the same members as the parent class

In Java, all classes derive from java.lang.Object

o All objects can be treated as an instance of Object

0 java.lang.Object defines functionality that all Java
classes should provide

equals (), hashCode (), getClass (), clone (), etfc.
o Example: can use equals () to compare any two objects

The Java API Documentation

Complete API docs for the entire Java platform
o Extremely useful, once you learn how to use it!

o Auto-generated from Java library source-code

Lists all classes and interfaces

o How to use them
o What features they provide
o Their relationships with each other

http://docs.oracle.com/javase/7/docs/api/
o So useful, you might even want a local copy!

Other Useful Java Documentation

The Java Tutorial
o Different “trails” cover different topics
o Very helpful resource for learning new features!

Java Development Kit (JDK) Documentation
o Feature-changes and new features
o Tool documentation

The Java Language Specification
The Java VM Specification

This Week’s Homework

Create your first Java program.

o The CS11 object-oriented programming classic:
Heron’'s Formula

o Create a 3D point class, add equals () and
distanceTo () methods

o Create another class that takes 3 points as input, and
computes the area of the triangle using Heron’s Formula

Learn how to compile and run your program.

