
CS11 – Java

Winter 2014-2015
Lecture 1

Welcome!

!  7 Lectures
"  Slides posted on CS11 website
"  http://courses.cms.caltech.edu/cs11

!  7 Lab Assignments
"  Made available around Friday
"  Due one week later – Friday, 12 noon

!  Assignments take a bit more than 3 hours per
week, on average

Assignments and Grading

!  Labs are given a score in range 0..3, and feedback
"  If your code is broken, you will have to fix it.
"  If your code is sloppy, you will have to clean it up.

!  Must receive 75% of the possible points to pass
"  With 7 assignments, 21 points available #

must score 15.5 or better to pass
"  With 8 assignments, 24 points available #

must score 18 or better to pass
"  Can definitely pass without completing all labs

!  Please turn in assignments on time
"  You will lose 0.5 points per day on late assignments

Lab Submissions

!  Using csman homework submission website:
"  https://csman.cms.caltech.edu
"  Many useful features, such as email notifications

!  Must have a CS cluster account to submit
"  csman authenticates against CS cluster account

!  CS cluster account also great for doing labs!
"  Can easily do the labs on your own machine,

since Java works the same anywhere
"  Just make sure you have Java 1.7+

Course Texts

!  No textbook is required
!  All necessary information is available online

"  Extensive Java API documentation
"  Java tutorials

A Brief History of Java

!  Created by Sun Microsystems starting late ’90s
"  Intended for embedded-systems programming
"  Primary goal was improving on C++
"  Renamed to Java in 1994

!  Java 1.0 released in 1995
"  Versions 1.1, 1.2, 1.3. 1.4

!  Numbering scheme changed with Java 5.0
"  (SDK/development version is still called 1.5)

!  Current version is Java 8

A Brief History of Java (2)

!  Language, and standard libraries, have
expanded dramatically over the years
"  Java 6 released in late 2006 – introduced many new

language features, new APIs
"  Java 7 released in mid 2011

!  Java platform was made (mostly) open-source
by Sun on May 2007
"  Allows Java platform to be ported to, and

customized for, additional hardware platforms
!  In Jan 2010, Oracle acquired Sun

"  Caused significant concern about future of Java

Design Goals of Java Language

!  Simple and familiar
"  Based on C/C++, but with many subtleties removed

!  Object-oriented
"  Well suited to distributed systems

!  Architecture-neutral
"  Both source code and binaries are portable

!  Dynamic loading and binding
"  Minimizes recompilations, and facilitates modularity!

!  Secure
"  Class verification, code signing, permissions

!  Multithreaded
"  Language specifies platform-neutral threading support

How Java Does Its Thing

!  Source code goes into .java files.
!  One top-level class per file.
!  Class’ name dictates file name.

!  Example: HelloWorldApp.java

// Display a message and then exit.
public class HelloWorldApp {
 public static void main(String[] args) {
 System.out.println("Hello, world!");
 }
}

How Java Does Its Thing (2)

!  Java compiler takes .java files and compiles them
into platform-independent .class files.
"  javac HelloWorldApp.java

produces HelloWorldApp.class
"  These class files contain byte-codes – instructions

for the Java Virtual Machine (JVM).

!  Byte-codes for our example:
public static void main(java.lang.String[])
0: getstatic #2; //Field java/lang/System.out
3: ldc #3; //String "Hello, world!"
5: invokevirtual #4; //Method java/io/PrintStream.println
8: return

How Java Does Its Thing (3)

!  Run the program with a Java Virtual Machine (JVM)
"  The JVM takes a class name, not the class’ filename

> java HelloWorldApp
Hello, world!

!  The java program implements the JVM for a
specific platform
"  Can run Java on any platform with a JVM implementation.

(Windows, Linux, Solaris, MacOS X, …)
!  Some JVMs improve performance by compiling Java

byte-codes into native machine code
"  Called “just-in-time” compilation, or JIT for short

Java Comments

!  Java comments are just like C++ comments
/*
 * This method prints hello world.
 */
public static void main(String[] args) {
 // This next part is tricky...
 System.out.println("Hello, world!"); // phew!
}

"  Block comments can span multiple lines
"  Single-line comments extend to end of line

!  Use block comments before classes/functions
!  Use single-line comments within functions

Java Data Types

!  Primitive Types
"  boolean values are true or false
"  char 16-bit unsigned integer

 (for Unicode characters)
"  byte 8-bit signed integer
"  int 32-bit signed integer
"  long 64-bit signed integer
"  float 32-bit signed floating-point value
"  double 64-bit signed floating-point value

More Java Data Types

!  Reference Types
"  Refers to an object (not a primitive type)
"  Can be null if the reference refers to nothing
"  Examples: String, Integer

!  In Java, arrays are also reference types
int[] numArray; // preferred!
int numArray[]; // also works

"  More on arrays in a few weeks!

Notes on Java Literals

!  Boolean is simply true or false
!  Integer values are straightforward

"  int i = 17;

!  Long values use “L” suffix:
"  long secondsInYear = 31556926L;
"  Avoid lower-case “l” – looks like 1 in many fonts…

!  Default type of a decimal value is double
"  double pi = 3.14159265358979323;

!  Float literal uses “F” suffix:
"  float goldenRatio = 1.618f;
"  In this case, either “F” or “f” is fine.

Java Character and String Literals

!  Character literals can be single-quoted characters,
or numbers between 0 and 65535
char capA = 'A'; // preferred
char capA = 65; // harder to maintain

!  String literals are double-quoted
String sandwichType = "pastrami";

!  Special characters must be escaped:
String msg = "He said, \"Java is neat!\"";

"  Most useful special characters:
\t = tab \r = carriage return \n = new line
\\ = backslash \' = single quote \" = double quote

Java Names and Naming Conventions

!  Names must start with a letter, and can include only
letters and digits
"  _ and $ are also considered “letters” in Java
"  Don’t use $ - used by compiler for auto-generated names

!  Capitalization is very important in Java coding style
"  Fields and methods should follow camelCase naming

convention
"  Classes and interfaces should follow UpperCamelCase

naming convention
"  Package names should be all lowercase

!  Java has a number of industry-wide conventions
"  Definitely want to learn them and follow them…
"  You must follow them in CS11 Java.

Java Variables and Initial Values

!  Java variable declarations are like C/C++
int i;
boolean err = false, done;
String name = "Donnie";

!  Local variables don’t have default initial values!
int i;
i = i + 1;

Compile-time error:
 variable i might not have been initialized

"  This is an example of Java’s focus on correctness
"  C or C++ would compile this code without errors

Primitive and Reference Variables

!  Difference between primitive and reference types is
where the value is actually stored

!  Primitive variables:
int i = 20;
int j = i;

"  Each variable stores its own value

!  Reference variables:
String s1 = "Java!";
String s2 = s1;

"  Value of reference variables is stored in main memory
"  Reference variables can refer to the same object

i 20

j 20

s2

s1 "Java!"

String object

Java Operators

!  Same set of operators as C and C++
"  Simple arithmetic: + - * / %
"  Compound assignment: += -= *= /= etc.
"  Increment/decrement: ++ -- (pre and post)

int i = 5;
int j = ++i; // j = 6, i = 6
int k = i++; // k = 6, i = 7

"  Comparisons: == != > >= < <=
!  Note: these operations produce boolean values!
!  In Java, no type can be cast to boolean (including int)
!  Also, boolean cannot be cast to any other type

Logical Boolean Operators

!  Again, same as C/C++: && || !
"  Logical AND, logical OR, and logical NOT.

!  These operators require boolean values, and
produce boolean values.

!  Lazy evaluation:
"  For example: name != null && name.equals("Donnie")

!  name.equals(...) only evaluated if name != null
"  Conversely: name == null || !name.equals("Donnie")

!  Precedence order: ! && ||

String Operators

!  String concatenation also uses + operator
public static void main(String[] args) {
 String name = "Donnie";
 System.out.println("Hello " + name);
}

!  At least one operand must be a String for + to do
string-concatenation.
"  + operator is evaluated left-to-right

int i = 5;
int j = 4;
System.out.println("i = " + i); // Prints "i = 5"
System.out.println(i + j); // Prints "9"
System.out.println("i + j = " + i + j);
System.out.println(i + j + " = i + j");

// "i + j = 54"
// "9 = i + j"

Flow Control in Java

!  Flow-control statements nearly identical to C/C++
if (cond) while (cond)

statement; statement;
else if (cond)

statement; do
else statement;

statement; while (cond);

!  Difference: cond must produce boolean value!
!  Blocks of statements are enclosed with curly-braces
{ }, just like in C/C++

if (cond) {
statement1;
statement2;

}

Java For-Loops

!  For loops are also very similar to C++
"  Initialize (and possibly declare) one or more looping variables
"  Test some condition before each iteration of the loop
"  Apply one or more updates to the looping variable(s)

for (init; condition; update) statement;
for (init; condition; update) {
 statement1;
 ...
}

!  Equivalent to while loops, but more compact.
int i = 1;
while (i <= 10) { for (i = 1; i <= 10; i++)
 sum += i; sum += i;
 i++;
}

More For-Loops

!  Can specify multiple initial values:
int i, sum;
for (i = 1, sum = 0; i <= 10; i++)
 sum += i;

!  Can declare loop variables in for-loop:
int sum = 0;
for (int i = 1; i <= 10; i++)
 sum += i;

"  In this example, i is only visible within the for-loop
"  The scope of i is within the for-loop.

Even More For-Loops

!  Can specify multiple update operations:
int sum = 0;
for (int i = 1; i <= 10; sum += i, i++) /*nothing*/;

"  Document that the for-loop doesn’t need a body!

!  Even more compact:
int sum = 0;
for (int i = 1; i <= 10; sum += i++) /* nothing */ ;

"  Difficult to maintain! Best to be avoided.

Java Methods – A Brief Overview

!  Methods return a value of the specified type.
!  Or they return no value, indicated by void keyword.
!  Methods can accept any number of arguments.

"  “No arguments” is indicated with empty parens (), not void.
!  A method’s signature includes its name and its parameter-list.

!  Modifiers will be covered in a bit…

public static void main(String[] args)

Access
Modifier

Method
Modifier

Return
Type

Method
Name

Parameter List

Method Signature

Printing in Java

!  System.out.println("Hello!");
!  Many flavors:

System.out.println(String x)
System.out.println(boolean x)
System.out.println(char x)
System.out.println(float x)
System.out.println(int x)
System.out.println(Object x)
System.out.println()

"  and a few more…
!  These are overloaded methods.

"  Same name, but different signature.

Java Console IO

!  System.out is the standard output stream
!  System.err is the standard error stream

"  Use this to report errors when bad things happen.

!  System.in is the standard input stream
"  We will use this this week.

!  System.out.println(…) goes to next line
!  Use System.out.print(…) to stay on same line

A Note About Class Names

!  Java classes can be grouped into packages
"  This is optional, but typically very helpful!
"  Packages form a hierarchy

!  package1.package2.ClassName
"  Package names are typically all lower-case
"  Naming rules are same as variable names.
"  Example: java.awt.event.MouseEvent

!  More details on this later!

Terminology: Classes and Objects

!  Java is entirely object-oriented programming
(OOP) language
"  Programs are entirely composed of classes

!  Objects are a tight pairing of two things:
"  State – a number of related data values
"  Behavior – code that acts on those data values in

coherent ways
!  A class is a “blueprint” for objects

"  The class defines the state and behavior of
objects of that class

"  Actually defines a new type in the language

Terminology: Fields and Methods

!  A class is comprised of members

!  Fields are variables associated with the class.
"  They store the class’ state.

!  Methods are operations that the class can perform.
"  A class’ set of methods specifies its behavior
"  The actual code for a method is its implementation
"  These methods generally (but not always) involve the class’

fields as well

Special Methods

!  Constructors create new instances of a class.
"  Can take arguments, but not required. No return value.
"  All classes have at least one constructor.

!  Accessors allow internal data to be retrieved.
"  Provides control over how data is exposed.

!  Mutators allow internal data to be modified.
"  Provides control over how and when changes can be

made.

!  No destructors in Java!
!  Not all classes have accessors and mutators.

Abstraction and Encapsulation

!  Abstraction:
"  Present a clean, simplified interface
"  Hide unnecessary detail from users of the class

(e.g. implementation details)
!  They usually don’t care about these details!
!  Let them concentrate on the problem they are solving.

!  Encapsulation:
"  Allow an object to protect its internal state from

external access and modification
"  The object itself governs all internal state-changes

!  Methods can ensure only valid state changes

Key OOP Concepts

Access-Modifiers

!  Can be used on classes, methods and fields
!  Four access modifiers in Java

"  public – Anybody can access it
"  private – Only the class itself can access it
"  protected – We’ll get to this later…
"  Default access-level (if you don’t specify anything)

!  Called “package-private” access

!  Protect implementation details by using
access modifiers in your code!

public class Point2d {
 // Coordinates
 private double xCoord;
 private double yCoord;

 /** Two-argument constructor. **/
 public Point2d(double x, double y) {
 xCoord = x;
 yCoord = y;
 }

 /** Default constructor; initializes to (0, 0). **/
 public Point2d() {
 // Call 2-argument constructor
 this(0, 0);
 }

 public double getX() { return xCoord; } // Accessors
 public double getY() { return yCoord; }

 public void setX(double x) { xCoord = x; } // Mutators
 public void setY(double y) { yCoord = y; }
}

Java Method Naming Conventions

!  Java accessors usually start with get
!  double getX()
!  double getY()

!  Java mutators usually start with set
!  void setX(double)
!  void setY(double)

!  Accessors that return boolean often start with is
!  boolean isRunning()
!  boolean isLoaded()

"  Exceptions are allowed when “is” doesn’t make sense:
!  boolean contains(Object)
!  boolean intersects(Set)

Using the Point

!  Create a new Point2d object using the new
operator
Point2d p1 = new Point2d();
Point2d p2 = new Point2d(3.04, -5.612);

!  Call methods on the Point2d objects
p1.setX(15.1);
p1.setY(12.67);
System.out.println("p2 = (" + p2.getX() +

"," + p2.getY() + ")");

Objects and References

!  What are p1 and p2 ?
Point2d p1 = new Point2d();
Point2d p2 = new Point2d(3.04, -5.612);

"  They are references to Point2d objects
"  They are not objects themselves

!  Juggling references:
Point2d p3 = p1;
p1 = null;
p2 = null;

!  JVM tracks when objects are no longer reachable
"  “Garbage collection”

// Still only two objects
// Both objects still reachable
// One object isn't reachable!

Object Method-Arguments in Java

!  What happens when you call a function with
an object argument?
public void printPoint(Point2d p)

!  Remember, p is a reference to the object
!  Reference is copied into p, but the Point2d

object that it refers to is not
!  Side-effects and funky bugs can easily occur!

Passing Objects in Java

void main(String[] args) {
 Point2d a =
 new Point2d(3.1, 2.4);

 printPoint(a);
}

void printPoint(Point2d p) {
 System.out.println(p.getX() +
 "," + p.getY());
 p.setX(5.7); // ???

xCoord

yCoord

3.1

2.4

a

p

Passing Objects in Java (2)

void main(String[] args) {
 Point2d a =
 new Point2d(3.1, 2.4);

 printPoint(a);
}

void printPoint(Point2d p) {
 System.out.println(p.getX() +
 "," + p.getY());
 p.setX(5.7); // affects a
 p = new Point2d(-6.9, 0.7); // ???

xCoord

yCoord

5.7

2.4

a

p

Passing Objects in Java (3)

void main(String[] args) {
 Point2d a =
 new Point2d(3.1, 2.4);

 printPoint(a);
}

void printPoint(Point2d p) {
 System.out.println(p.getX() +
 "," + p.getY());
 p.setX(5.7); // affects a
 p = new Point2d(-6.9, 0.7);
 p.setY(-2.1); // ???
}

xCoord

yCoord

5.7

2.4

a

p

xCoord

yCoord

-6.9

0.7

Passing Objects in Java (4)

void main(String[] args) {
 Point2d a =
 new Point2d(3.1, 2.4);

 printPoint(a);
}

void printPoint(Point2d p) {
 System.out.println(p.getX() +
 "," + p.getY());
 p.setX(5.7); // affects a
 p = new Point2d(-6.9, 0.7);
 p.setY(-2.1); // local only
}

xCoord

yCoord

5.7

2.4

a

p

xCoord

yCoord

-6.9

-2.1

The Moral

!  Be very careful with object-references
"  If a method accidentally changes an object, it can

be very tricky to track down.
!  Where reasonable, make objects immutable

"  Java has no equivalent to C++ const keyword!
"  An object is immutable if it provides no mutators

!  Set object’s state at construction time
!  Don’t provide any way to change the state

Method Magic

!  Most methods have an implicit parameter this
"  this is a reference to the object being called

!  Implicitly used when object fields or methods are
accessed inside another method

public double getX() {
 return xCoord; // Same as "return this.xCoord;"
}

public String toString() {
 // Same as "this.getX()" and "this.getY()"
 return "(" + getX() + " " + getY() + ")";
}

Method Magic (2)

!  Can also use this to resolve ambiguities

void setX(double xCoord) {
 // xCoord is the parameter
 // this.xCoord is the object's field
 this.xCoord = xCoord;
}

!  Not an uncommon approach for mutators…
"  Argument name is same as field name

!  In general, avoid unnecessary ambiguities!
"  Can lead to very subtle bugs

Static Methods

!  Some methods do not require a specific object
"  Called “static methods,” or “class methods.”

public static double atan2(double y, double x);

"  Static methods can’t use this reference
!  Method isn’t called on a specific object!

"  Specify ClassName.methodName()
!  Non-static methods called “instance methods”
!  java.lang.Math has only static methods

double tangent = Math.atan2(yComp, xComp);

Equality in Java

!  Primitive types use == the way you would expect.
!  For reference types, == compares the references

themselves!
Point2d p1 = new Point2d(3, 5);
Point2d p2 = new Point2d(3, 5);
Point2d p3 = p1;

"  Points p1 and p3 are the same object
!  p1 == p3 is true
!  p1 == p2 is false, even though values are the same

!  Use obj1.equals(obj2) to test value-equality
"  Corollary: When you write classes, provide a reasonable

implementation of the equals() method.

The equals() Method

!  Signature:
public boolean equals(Object obj)

!  Returns true if obj is “equal to” this object
"  Depends on what your class represents!
"  If obj is null, the answer is always “not equal”

!  Note that obj is a generic Object reference
"  It could be any reference-type! Check that too.
"  The instanceof keyword lets you do this

Does equals() Make Sense?

!  Reflexive:
"  a.equals(a) should return true

!  Symmetric:
"  a.equals(b) should be the same as b.equals(a)
"  This can be tricky sometimes…

!  Transitive:
"  If a.equals(b) is true and b.equals(c) is true, then
a.equals(c) should also be true

!  Nulls:
"  a.equals(null) should be false

Are These Points Equal?

@Override
public boolean equals(Object obj) {
 // Is obj a Point2d?
 if (obj instanceof Point2d) {
 // Cast other object to Point2d type,
 // then compare.
 Point2d other = (Point2d) obj;
 if (xCoord == other.getX() &&
 yCoord == other.getY()) {
 return true;
 }
 }

 // If we got here then they're not equal.
 return false;
}

The instanceof Operator

!  Use this to test an object’s type – its class
!  Defined to return false if the reference is null

"  This is why we don’t need to check if the incoming
object-reference is null.

Why equals(Object) ?

!  Classes can derive from other classes
"  Child class inherits all fields/methods of the parent class
"  Allows hierarchies of classes to be defined
"  Child class can be treated as its parent, since it has (at

least) the same members as the parent class
!  In Java, all classes derive from java.lang.Object

"  All objects can be treated as an instance of Object
"  java.lang.Object defines functionality that all Java

classes should provide
!  equals(), hashCode(), getClass(), clone(), etc.

"  Example: can use equals() to compare any two objects

The Java API Documentation

!  Complete API docs for the entire Java platform
"  Extremely useful, once you learn how to use it!
"  Auto-generated from Java library source-code

!  Lists all classes and interfaces
"  How to use them
"  What features they provide
"  Their relationships with each other

!  http://docs.oracle.com/javase/7/docs/api/
"  So useful, you might even want a local copy!

Other Useful Java Documentation

!  The Java Tutorial
"  Different “trails” cover different topics
"  Very helpful resource for learning new features!

!  Java Development Kit (JDK) Documentation
"  Feature-changes and new features
"  Tool documentation

!  The Java Language Specification
!  The Java VM Specification

This Week’s Homework

!  Create your first Java program.
"  The CS11 object-oriented programming classic:

Heron’s Formula
"  Create a 3D point class, add equals() and
distanceTo() methods

"  Create another class that takes 3 points as input, and
computes the area of the triangle using Heron’s Formula

!  Learn how to compile and run your program.

