
CS 11 Haskell track: lecture 5

 This week:
 State monads

Reference

 "Monads for the Working Haskell
Programmer"

 http://www.engr.mun.ca/~theo/Misc/
haskell_and_monads.htm

 Good explanation of state monads
 Today's lecture shamelessly ripped off from

this

Stateful computations (1)

 Most programming languages use state all
over the place

 Functions can receive inputs, return outputs,
and also modify the global state

 Internally, functions often work by modifying
local state of function on a line-by-line basis

Stateful computations (2)

 Haskell is a purely functional programming
language
 can’t modify state locally or globally

 Can always turn a stateful computation into
a stateless computation – how?

Stateful computations (3)

 Can "thread the state" through functions by
adding state as extra argument
 though functions become more cumbersome

 E.g. f(x)  f(state, x)
 Managing threaded state becomes

inconvenient
 How can we retain advantages of functional

programming while still threading state?

Modeling state in Haskell (1)

 Recall that monads provide a way of
structuring computations that are function-
like but not necessarily strictly functional

 We can create a monadic interface to
functions that manipulate local state

 Conceptually, our "functions" will look like:
 local state
input -------------> output

Modeling state in Haskell (2)

 To make this functional, we have to put the
local state in the inputs and outputs as an
additional argument in each:

 Now our functions look like this:
(input, state) -> (state, output)

 The function takes in an input value, plus
the initial value of the local state, and
returns the output value, plus the final value
of the local state

Modeling state in Haskell (3)

 We can curry the input argument to get:
input -> state -> (state, output)

 This will be the characteristic shape of the
monadic functions we'll be working with

 The monadic values will represent functions
of the form state -> (state, output)

Modeling state in Haskell (4)

 Monadic functions:
input -> state -> (state, output)

 Corresponds to a -> m b where a is input
and m b is (state -> (state, output))

 Monadic values: (state -> (state, output))
or m b for the appropriate monad m

 Real state monads are a thin wrapper
around this notion

Running example
 Imperative algorithm to compute greatest

common divisor (GCD) of two positive integers:
int gcd(int x, int y) {
 while (x != y) {
 if (x < y)
 y = y - x;
 else
 x = x - y;
 }
 return x;
}

Stateful data types (1)

 First, want to encapsulate notion of threading
state into our data types:

newtype StateTrans s a = ST (s -> (s, a))

 newtype declaration is like a data declaration

with only one option

 Now a StateTrans object encapsulates some

kind of state (s) and some kind of value (a)

Stateful data types (2)

newtype StateTrans s a = ST (s -> (s, a))

 Notice that this type defines a whole family of
state-passing types

 For any given computation, must assign a
particular kind of state and a particular kind of
value

 Can specify how to combine different instances
of this type

Stateful data types (3)

 Can probably assume that state type stays
constant throughout computation
 represents all possible aspects of state in the

computation e.g. as a tuple

 Value types may change for every step of the
computation

State monads (1)
 Can think of stateful computation as a

composition of several smaller stateful
computations

 To manage different "notions of computation",
we use monads
 IO – computations that perform I/O
 Maybe – computations that may fail
 List – computations that may return multiple

results
 StateTrans – computations that transform state

State monads (2)
 Let's build up the instance declaration:

instance Monad (StateTrans s)
 where
 -- return :: a -> StateTrans s a
 return x = ST (\s0 -> (s0, x))

 return just returns a value, leaving the state
unchanged

State monads (3)
 Still need the bind operator:
-- (>>=) :: StateTrans s a ->
-- (a -> StateTrans s b) ->
-- StateTrans s b
(ST p) >>= k =
 ST (\s0 ->
 let (s1, x) = p s0
 (ST q) = k x
 in q s1)

State monads (4)
 Meaning of the bind operator:
(ST p) >>= k =
 ST (\s0 -> let (s1, x) = p s0
 (ST q) = k x
 in q s1)

 Given state transformer p, return new state
transformer that
 takes a state s0, applies p to it to get (s1, x)
 applies k to x to get new state transformer ST q
 applies q to new state s1 to get final state/value pair

Useful auxiliary functions (1)

-- Extract the state from the monad.
readST :: StateTrans s s
readST = ST (\s0 -> (s0, s0))

-- Update the state of the monad.
updateST :: (s -> s) -> StateTrans s ()

updateST f = ST (\s0 -> (f s0, ()))

Useful auxiliary functions (2)

-- Evaluate a stateful computation.
runST :: StateTrans s a -> s -> (s, a)
runST (ST p) s0 = p s0

 This starts off the entire computation
 by passing a state to a particular transformer
 result is the final state/value pair

GCD example (1)

 The state represents?
 the current x and y values.

type GCDState = (Int, Int)

GCD example (2)
 Getting values from the state:
getX :: StateTrans GCDState Int
-- getX = ST (\s0 -> (s0, fst s0))
getX = do s0 <- readST
 return (fst s0)

getY :: StateTrans GCDState Int
-- getY = ST (\s0 -> (s0, snd s0))
getY = do s0 <- readST
 return (snd s0)

GCD example (3)
 Evaluation of getX
getX = do s0 <- readST
 return (fst s0)

 Desugar do, equivalent to:
getX = readST >>= \s0 -> return (fst s0)

 Evaluate readST:
getX = ST (\s0 -> (s0, s0)) >>=
 \s0 -> return (fst s0)

GCD example (4)
 Evaluation of getX
getX = readST >>= \s0 -> return (fst s0)
 = ST (\s0 -> (s0, s0)) >>=
 \s0 -> return (fst s0)
 Unpack >>= operator for state monad
 Recall:
(ST p) >>= k =
 ST (\s0 -> let (s1, x) = p s0
 (ST q) = k x
 in q s1)

GCD example (5)
getX = ST (\s0 -> (s0, s0)) >>=
 \s0 -> return (fst s0)
(ST p) >>= k =
 ST (\s0 -> let (s1, x) = p s0
 (ST q) = k x
 in q s1)
 Here, p s0 = (s0, s0)
 k = \s0 -> return (fst s0)
getX = ST (\s0 -> let (s1, x) = (s0, s0)
 (ST q) = return (fst s0)
 in q s1)

GCD example (6)
getX = ST (\s0 -> let (s1, x) = (s0, s0)
 (ST q) = return (fst s0)
 in q s1)
 Recall:
return x = ST (\s0 -> (s0, x))
 Therefore:
ST q = ST (\s0 -> (s0, fst s0))
 Continuing...
getX = ST (\s0 -> q s1)
 = ST (\s0 -> q s0) -- s1 == s0 here
 = ST (\s0 -> (s0, fst s0)) -- QED

GCD example (7)
 Putting values into the state:

putX :: Int -> StateTrans GCDState ()
-- putX x' = ST (\(x, y) -> ((x', y), ()))
putX x' = updateST (\s0 -> (x', snd s0))

putY :: Int -> StateTrans GCDState ()
-- putY y' = ST (\(x, y) -> ((x, y'), ()))
putY y' = updateST (\s0 -> (fst s0, y'))

GCD example (8)
 Compute the GCD:
gcdST :: StateTrans GCDState Int

gcdST = do x <- getX

 y <- getY

 (if x == y

 then return x

 else if x < y

 then do putY (y - x)

 gcdST

 else do putX (x - y)

 gcdST)

GCD example (9)
 Compute the GCD:
gcdST :: StateTrans GCDState Int

gcdST = do x <- getX

 y <- getY

 (if x == y

 then return x

 else if x < y

 then do putY (y - x)

 gcdST

 else do putX (x - y)

 gcdST)

looks like recursive
function call, but
isn't really

GCD example (10)
do putY (y - x)
 gcdST
 Equivalent to:
putY (y - x) >> gcdST
 Combines two state transformers to get a new

state transformer
 Recursive data definition

 not recursive function call
 like ones = 1 : ones

GCD example (11)
 Running the GCD:

mygcd :: Int -> Int -> Int
mygcd x y = snd (runST gcdST (x, y))

 Initialize GCD state transformer with (x, y)
 Run it until it returns a final (state, value) pair
 Return the second element of the pair (the

result value)

GCD example (12)

 Could write more helper functions
 e.g. whileST

 to more accurately imitate the imperative
algorithm

 Common Haskell practice to write higher-
order monad combinators

whileST (1)

 Let's try to write whileST
 State monad version of an imperative

"while" loop
 Inputs?

 a "test" (to see if we continue the loop)
 a "body" (the contents of the loop)

 Output?
 a state transformer implementing the while loop

whileST (2)

 Type of the inputs?
 test

 a function mapping ... ?
 the state to a boolean (s -> Bool)

 body
 a state transformer returning ... ?
 nothing! (unit type ())
 StateTrans s ()

whileST (3)

 Type of the output?
 a state transition returning ... ?
 nothing! (unit type ())
 StateTrans s ()

 The function thus has type
 (s -> Bool) -> StateTrans s ()
-> StateTrans s ()

whileST (4)

whileST :: (s -> Bool) -> StateTrans s () ->
StateTrans s ()

whileST test body =
 do s0 <- readST
 if (test s0)
 then do updateST (fst . b)
 whileST test body
 else return ()
 where ST b = body

whileST (4)

whileST :: (s -> Bool) -> StateTrans s () ->
StateTrans s ()

whileST test body =
 do s0 <- readST
 if (test s0)
 then do updateST (fst . b)
 whileST test body
 else return ()
 where ST b = body

read the current state

whileST (4)

whileST :: (s -> Bool) -> StateTrans s () ->
StateTrans s ()

whileST test body =
 do s0 <- readST
 if (test s0)
 then do updateST (fst . b)
 whileST test body
 else return ()
 where ST b = body

if the test is true

whileST (4)

whileST :: (s -> Bool) -> StateTrans s () ->
StateTrans s ()

whileST test body =
 do s0 <- readST
 if (test s0)
 then do updateST (fst . b)
 whileST test body
 else return ()
 where ST b = body

change the state using
the body of the loop

whileST (4)

whileST :: (s -> Bool) -> StateTrans s () ->
StateTrans s ()

whileST test body =
 do s0 <- readST
 if (test s0)
 then do updateST (fst . b)
 whileST test body
 else return ()
 where ST b = body

repeat the loop

whileST (4)

whileST :: (s -> Bool) -> StateTrans s () ->
StateTrans s ()

whileST test body =
 do s0 <- readST
 if (test s0)
 then do updateST (fst . b)
 whileST test body
 else return ()
 where ST b = body

otherwise, we're done

whileST (5)

 GCD function using whileST:
gcdST :: StateTrans GCDState Int
gcdST = do whileST (\(x, y) -> x /= y)
 (do x <- getX
 y <- getY
 if x < y
 then putY (y - x)
 else putX (x - y))
 getX

whileST (5)

 GCD function using whileST:
gcdST :: StateTrans GCDState Int
gcdST = do whileST (\(x, y) -> x /= y)
 (do x <- getX
 y <- getY
 if x < y
 then putY (y - x)
 else putX (x - y))
 getX

test

whileST (5)

 GCD function using whileST:
gcdST :: StateTrans GCDState Int
gcdST = do whileST (\(x, y) -> x /= y)
 (do x <- getX
 y <- getY
 if x < y
 then putY (y - x)
 else putX (x - y))
 getX

body

whileST (5)

 GCD function using whileST:
gcdST :: StateTrans GCDState Int
gcdST = do whileST (\(x, y) -> x /= y)
 (do x <- getX
 y <- getY
 if x < y
 then putY (y - x)
 else putX (x - y))
 getX result is x

whileST (6)

 Haskell

do whileST (\(x, y) -> x /= y)

 (do x <- getX

 y <- getY

 if x < y
 then putY (y - x)

 else putX (x - y))

 getX

 C

 while (x != y) {
 if (x < y) {
 y = y - x;
 } else {
 x = x - y;
 }
 }
 return x;

What have we accomplished?

 We can now write any function in Haskell
that would have used "internal state" in
another language in essentially the same
way

 Could have done this before if we were
willing to convert imperative function into
a functional form
 now we don't have to

Bottom line

 State monads can be used to implement
imperative computations in a functional
setting

 Requires a change of perspective:
 functions don't just map values to values
 functions map state transformers to state

transformers
 monads make this convenient

Quote

 "Haskell is the world's best imperative
language"

Warning! (1)

 Just because we can express stateful
computations in Haskell, doesn't mean
they run faster

 Sometimes, would like to write code in
imperative style just so it runs faster (like
raw C code)

 Haskell provides different tools to do this

Warning! (2)

 To represent the notion of a mutable
value, can use
 IORef a -- mutable value of type a
 STRef a -- ditto

 IORef a runs in IO monad, STRef a
runs in ST monad (which we haven't
discussed)

 If you do this, code will run very fast

Next time

 Wrap up the lectures
 Module system
 Arrays
 "Maybe" some more monads

