i CS 11 Haskell track: lecture 5

" This week:
= State monads

ﬁ Reference

= "Monads for the Working Haskell
Programmer”

= http://www.engr.mun.ca/~theo/Misc/
haskell and monads.htm

= Good explanation of state monads

= Today's lecture shamelessly ripped off from
this

i Stateful computations (1)

= Most programming languages use state all
over the place

= Functions can receive inputs, return outputs,
and also modify the global state

= Internally, functions often work by modifying
local state of function on a line-by-line basis

i Stateful computations (2)

= Haskell is a purely functional programming
language
= can’t modify state locally or globally

= Can always turn a stateful computation into
a stateless computation — how?

i Stateful computations (3)

= Can "thread the state" through functions by
adding state as extra argument

= though functions become more cumbersome
m Eg. £(x) 2 £(state, x)

= Managing threaded state becomes
inconvenient

= How can we retain advantages of functional
programming while still threading state?

i Modeling state in Haskell (1)

= Recall that monads provide a way of
structuring computations that are function-
like but not necessarily strictly functional

= \We can create a monadic interface to
functions that manipulate local state

= Conceptually, our "functions" will look like:
local state

input -------—------ > output

i Modeling state in Haskell (2)

= To make this functional, we have to put the
local state in the inputs and outputs as an
additional argument in each:

= Now our functions look like this:
(input, state) -> (state, output)

= The function takes in an input value, plus
the initial value of the local state, and
returns the output value, plus the final value
of the local state

& Modeling state in Haskell (3)

= We can curry the input argument to get:
input -> state -> (state, output)

= This will be the characteristic shape of the
monadic functions we'll be working with

= The monadic values will represent functions
of the form state -> (state, output)

& Modeling state in Haskell (4)

= Monadic functions:
input -> state -> (state, output)

= Corresponds to a -> m b where a is input
andm b iS (state -> (state, output))

= Monadic values: (state -> (state, output))
or m b for the appropriate monad m

= Real state monads are a thin wrapper
around this notion

* Running example

= Imperative algorithm to compute greatest
common divisor (GCD) of two positive integers:
int ged(int x, int y) {

while (x !'=vy) {
if (x < y)
Y =Y - X/
else

X

I
5
I
<

}

return x;

i Stateful data types (1)

= First, want to encapsulate notion of threading
state into our data types:

newtype StateTrans s a = ST (s -> (s, a))

= newtype declaration is like a data declaration
with only one option

= Now a StateTrans object encapsulates some
kind of state (s) and some kind of value (a)

i Stateful data types (2)

newtype StateTrans s a = ST (s -> (s, a))

= Notice that this type defines a whole family of
state-passing types

= For any given computation, must assign a
particular kind of state and a particular kind of
value

= Can specify how to combine different instances
of this type

i Stateful data types (3)

= Can probably assume that state type stays
constant throughout computation

= represents all possible aspects of state in the
computation e.qg. as a tuple

= Value types may change for every step of the
computation

i State monads (1)

= Can think of stateful computation as a
composition of several smaller stateful
computations

= To manage different "notions of computation”,
we use monads
= IO — computations that perform I/O

= Maybe — computations that may fail

= List — computations that may return multiple
results

= StateTrans — computations that transform state

i State monads (2)

= | et's build up the instance declaration:

instance Monad (StateTrans s)
where
-— return :: a -> StateTrans s a
return x = ST (\sO0O -> (s0, x))

= return just returns a value, leaving the state
unchanged

i State monads (3)

= Still need the bind operator:
-— (>>=) :: StateTrans s a ->
- = (a -> StateTrans s b) ->
- - StateTrans s b
(ST p) >>= k =
ST (\sO0 ->
let (sl1l, x) = sO
(ST q) =k x
in q sl)

I
O

& State monads (4)

= Meaning of the bind operator:
(ST p) >= Lk =

ST (\sO0O -> let (sl, x) p sO

(ST) =k x
in q sl)

= Given state transformer p, return new state

transformer that

= takes a state s0, appliesp toittoget (s1, x)

= applies k to x to get new state transformer ST g
= applies g to new state s1 to get final state/value pair

* Useful auxiliary functions (1)

-—- Extract the state from the monad.

readST :: StateTrans s s
readST = ST (\sO -> (s0, s0))

-- Update the state of the monad.
updateST :: (s -> s) -> StateTrans s ()

updateST £ = ST (\sO0 -> (£ sO0, ()))

i Useful auxiliary functions (2)

-- Evaluate a stateful computation.
runST :: StateTrans s a -> s -> (s, a)
runST (ST p) sO0 = p sO

= This starts off the entire computation
= by passing a state to a particular transformer
= result is the final state/value pair

i GCD example (1)

= The state represents?
= the current x and y values.

type GCDState = (Int, Int)

i GCD example (2)

= Getting values from the state:
getX :: StateTrans GCDState Int
-- getX = ST (\s0 -> (s0, fst s0))
getX = do s0 <- readST

return (fst s0)

getY :: StateTrans GCDState Int
-- getY = ST (\s0O -> (s0, snd s0))
getY = do s0 <- readST

return (snd s0)

i GCD example (3)

= Evaluation of getXx

getX = do s0 <- readST
return (fst sO0)

= Desugar do, equivalent to:
getX = readST >>= \sO0 -> return (fst s0)

= Evaluate readsrT:
getX = ST (\sO0 -> (s0, s0)) >>=
\sO0 -> return (fst sO0)

i GCD example (4)

= Evaluation of getXx
getX = readST >>= \sO0 -> return (fst s0)
= ST (\sO -> (s0, s0)) >>=

\sO0 -> return (fst sO0)

= Unpack >>= operator for state monad
= Recall:
(ST p) >=k =
ST (\s0O -> let (sl, x) = p sO0
(ST q) =k x
in q sl)

GCD example (5)

= ST (\sO0O -> (s0, s0)) >>=
\s0 -> return (fst s0)
(ST p) >=k =
ST (\sO0O -> let (sl1l, x) p sO
(ST q) =k x
in q sl)

getX

= Here, p sO = (s0, s0)
0 k = \sO0 -> return (fst sO0)
getX = ST (\s0 -> let (sl, x) = (s0, s0)
(ST q) = return (fst s0)
in q sl)

i GCD example (6)

getX = ST (\s0 -> let (sl, x) = (s0, s0)
(ST q) = return (fst s0)
in q sl)

= Recall:
return x = ST (\sO0 -> (s0, x))

= Therefore:
ST q = ST (\s0 -> (s0, fst s0))

= Continuing...
getX = ST (\s0 -> g sl)
= ST (\s0O -> g s0) -- sl == s0 here

= ST (\sO -> (s0, fst s0)) -- QED

i GCD example (7)

= Putting values into the state:

putX :: Int -> StateTrans GCDState ()

-- putX x' = ST (\(x, y) > ((x', y), ()))
putX x' = updateST (\sO0 -> (x', snd s0))

putY :: Int -> StateTrans GCDState ()
-- putY y' = ST (\(x, y) -> ((x, ¥y'), ()))
putY y' = updateST (\sO0 -> (fst sO0, y'))

i GCD example (8)
= Compute the GCD:

gcdST :: StateTrans GCDState Int
gcdST = do x <- getX

y <- getY
(1f x ==y
then return x
else 1if x < y
then do putY (y - x)
gcdST
else do putX (x - y)
gcdST)

i GCD example (9)
= Compute the GCD:

gcdST :: StateTrans GCDState Int
gcdST = do x <- getX

looks like recursive
function call, but

<- gety .
y =7 9 isn't really

(1f x ==y

then return x
else 1if x < y

then|do putY (y - x)
gcdST

else do putX (x - y)
gcdST)

& GCD example (10)

do putY (y - x)
gcdST

= Equivalent to:
putY (y - x) >> gecdST

= Combines two state transformers to get a new
state transformer

= Recursive data definition
= not recursive function call

" ke ones = 1 : ones

& GCD example (11)
= Running the GCD:

mygcd :: Int -> Int -> Int
mygced x y = snd (runST gcdST (x, Vy))

= Initialize GCD state transformer with (x, v)

= Run it until it returns a final (state, value) pair

= Return the second element of the pair (the
result value)

i GCD example (12)

= Could write more helper functions
" .. whileST

= to more accurately imitate the imperative
algorithm

= Common Haskell practice to write higher-
order monad combinators

i whileST (1)

= | et's try to write whileST

= State monad version of an imperative
"while" loop

= Inputs?
" 3 "test" (to see if we continue the loop)
= a "body" (the contents of the loop)

= Qutput?
= 3 state transformer implementing the while loop

i whileST (2)

= Type of the inputs?

= fest
= a function mapping ... ?
= the state to a boolean (s -> Bool)

= body
= 3 state transformer returning ... ?
= nothing! (unit type ())

m StateTrans s ()

& whileST (3)

= Type of the output?
= a state transition returning ... ?
= nothing! (unit type ())

m StateTrans s ()
= The function thus has type

(s -> Bool) -> StateTrans s ()
-> StateTrans s ()

whileST (4)

whileST :: (s -> Bool) -> StateTrans s () ->
StateTrans s ()

whileST test body =
do s0 <- readST
i1f (test s0)
then do updateST (fst . b)
whileST test body
else return ()
where ST b = body

whileST (4)

whileST :: (s -> Bool) -> StateTrans s () ->
StateTrans s ()

whileST test body =
do |s0 <- readST read the current state
i1f (test s0)
then do updateST (fst . b)
whileST test body
else return ()
where ST b = body

whileST (4)

whileST :: (s -> Bool) -> StateTrans s () ->
StateTrans s ()

whileST test body =
do s0 <- readST
if (test s0) if the test is true
then do updateST (fst . b)
whileST test body
else return ()
where ST b = body

whileST (4)

whileST :: (s -> Bool) -> StateTrans s () ->
StateTrans s ()

whileST test body =
do s0 <- readST change the state using
if (test s0) the body of the loop

then do|updateST (fst . b)
whileST test body

else return ()
where ST b = body

whileST (4)

whileST :: (s -> Bool) -> StateTrans s () ->
StateTrans s ()

whileST test body =
do s0 <- readST
i1f (test s0)
then do updateST (fst . b)
|whi1eST test body |
else return ()
where ST b = body

repeat the loop

whileST (4)

whileST :: (s -> Bool) -> StateTrans s () ->
StateTrans s ()

whileST test body =
do s0 <- readST
i1f (test s0)
then do updateST (fst . b)
whileST test body

else|return () | otherwise, we're done
where ST b = body

i whileST (5)

= GCD function using whileST:
gcdST :: StateTrans GCDState Int
gcdST = do whileST (\(x, y) -> x /= vy)
(do x <- getX

y <- getY¥

if x < y
then putY (y - x)
else putX (x - y))
getX

i whileST (5)

= GCD function using whileST:
gcdST :: StateTrans GCDState Int test
gedST = do whileST [(\(x, y) -> x /=y) |
(do x <- getX

y <- getY

if x < y
then putY (y - x)
else putX (x - y))
getX

i whileST (5)

= GCD function using whileST:

gcdST :: StateTrans GCDState Int
gcdST = do whileST (\(x, y) -> x /= vy)
(do x <- getX body
y <- getY¥
if x < y

then putY (y - x)
else putX (x - y))

getX

i whileST (5)

= GCD function using whileST:
gcdST :: StateTrans GCDState Int
gcdST = do whileST (\(x, y) -> x /= vy)
(do x <- getX

y <- getY¥

if x < y
then putY (y - x)
else putX (x - y))

|getX | result is x

whileST (6)

= Haskell

do whileST (\(x, y) -> x /= y)
(do x <- getX
y <- getY¥
if x < y
then putY (y - Xx)
else putX (x - y))
getX

=C

while (x '= y) {
if (x < y) {
Y=Y - x;
} else {
X =X -Y;
}
}

return x;

i What have we accomplished?

= We can now write any function in Haskell
that would have used "internal state" in
another language in essentially the same
way

= Could have done this before if we were
willing to convert imperative function into
a functional form

= how we don't have to

i Bottom line

= State monads can be used to implement
imperative computations in a functional
setting

= Requires a change of perspective:
= functions don't just map values to values

= functions map state transformers to state
transformers

= monads make this convenient

& Quote

= "Haskell is the world's best imperative
language”

i Warning! (1)

= Just because we can express stateful
computations in Haskell, doesn't mean
they run faster

= Sometimes, would like to write code in
imperative style just so it runs faster (like
raw C code)

= Haskell provides different tools to do this

i Warning! (2)

= To represent the notion of a mutable
value, can use

= IORef a -- mutable value of type a
= STRef a --ditto

= TORef a runsin IO monad, STRef a
runs in ST monad (which we haven't
discussed)

= If you do this, code will run very fast

i Next time

= Wrap up the lectures
= Module system
= Arrays
= "Maybe" some more monads

