CS 11 Haskell track: lecture 4

This week: Monads!

- Have already seen an example of a monad
 - IO monad
- But similar concepts can be used for a lot of completely unrelated tasks
- Monads are useful "general interfaces" to a wide variety of computational tasks

- Monads can act as generalized "containers"
 - e.g. List monad
- or as generalized "transformers" or "actions"
 - e.g. Io monad, State monad
- and many other things as well
- Don't get hung up on one viewpoint
 - all are valid

Category theory

- The word "Monad" comes from a branch of mathematics known as category theory
 - However, we won't deal with category theory here
 - If you're interested in this, I can talk more about this off-line
 - CT is relevant but not strictly necessary to understand Haskell monads

Haskell defines a Monad type class like this:

```
class Monad m where
  (>>=) :: m a -> (a -> m b) -> m b
  (>>) :: m a -> m b -> m b
  return :: a -> m a
  fail :: String -> m a
```

What does this mean?

```
class Monad m where
  (>>=) :: m a -> (a -> m b) -> m b
  (>>) :: m a -> m b -> m b
  return :: a -> m a
  fail :: String -> m a
```

Let's ignore (>>) and fail for now

```
class Monad m where
  (>>=) :: m a -> (a -> m b) -> m b
  (>>) :: m a -> m b -> m b
  return :: a -> m a
  fail :: String -> m a
```

Effects

- To explain further, we need to talk about the notion of functions with "effects"
- "Effects" may include input/output (IO monad), manipulating local or global state (State monad), raising exceptions (Error monad), possible failure (Maybe monad), or returning multiple values (List monad)
 - or other possibilities!

Functions and effects (1)

There are many kinds of "functions" or function-like actions that we might want to do that have effects beyond mapping specific inputs to specific outputs

Functions and effects (2)

- A normal function has the signature
 a -> b, for some types a and b
- If such a function also had some kind of "effect" (call it E), then we might write this as:
- a --[E]--> b
- I'll refer to functions with effects as "monadic functions"

Functions and effects (3)

- A normal function of type a -> b can be composed with a function of type b -> c to give a function of type a -> c
- How would be compose a function with effects (monadic function) with another such function?
- How do we compose a --[E1]--> b with b --[E2]--> c to give a function a --[E1,E2]--> c?

Functions and effects (4)

- Haskell represents functions with effects
 i.e. a -- [E] --> b as having the type
 a -> E b where E is some kind of a
 monad (like IO)
 - We'll write m instead of E from now on
- So we need to figure out how to compose functions of type a -> m b with functions of type b -> m c to get functions of type

Functions and effects (5)

- Being able to compose functions with effects is critical, because we want to be able to build larger effectful functions by composing smaller effectful functions
- Example: chaining together functions that read input from the terminal (in the IO monad) to functions that write output to the terminal (in the IO monad)

Functions and effects (6)

We want to compose functions with types

```
f1 :: a -> m b
f2 :: b -> m c
```

- to get a function with type a -> m c
- We can pass a value of type a to f1 to get a value of type m b
- Then we need to somehow take the m b value, unpack a value of type b and pass it to £2 to get the final m c value

Functions and effects (7)

- How do we take the m b value, unpack a value of type b and pass it to £2 to get the final m c value?
- The answer is specific to every monad
 - For Io it's kind of "magical"; the system takes care of it
- This is why there is the >>= function in the Monad type class, with the type signature
 m a -> (a -> m b) -> m b

Functions and effects (8)

- Note: the type signature:
 - m a -> (a -> m b) -> m b
- is the same as:
 - m b -> (b -> m c) -> m c
 - (just change the type variable names)
- so this is indeed what we want

Functions and effects (9)

The bind operator:

```
■ (>>=) :: m a -> (a -> m b) -> m b
```

is thus a kind of "monadic apply operator" which takes a "monadic value" (of type m a), unpacks a value of type a somehow, and feeds it to the "monadic function" (of type a -> m b) to get the final monadic value (of type m b)

Functions and effects (10)

- The bind operator:
 - (>>=) :: m a -> (a -> m b) -> m b
- is part of the Monad type class, so it has a separate (overloaded) definition for every instance of the Monad type class
 - such as IO, State, Error, Maybe, List, etc.

Monad definition again

```
class Monad m where
  (>>=) :: m a -> (a -> m b) -> m b
  return :: a -> m a
```

- Note that instances of Monad (i.e. m) must be polymorphic type constructors
 - m is a type constructor, m a is a type
- Whereas instances of Eq, Ord etc. are just regular types (not type constructors)

Monad definition again

N.B. Io is a type constructor, so Io can substitute for m here:

```
instance Monad IO where
  (>>=) :: IO a -> (a -> IO b) -> IO b
  (definition omitted)
  return :: a -> IO a
  (definition omitted)
```

Monad laws

Haskell's monads must obey these laws:

```
1) (return x) >>= f == f x
```

- 2) mx >>= return == mx
- 3) (mx >>= f) >>= g == $mx >>= (\x -> f x >>= g)$
- (1) and (2) are sorta-kinda identity laws
- (3) is sorta-kinda an associative law
- (here, mx is a value of type m x)

Note

```
3) (mx >>= f) >>= g ==

mx >>= (\x -> f x >>= g)
```

Can write this as:

3)
$$(mx >>= (\x -> f x)) >>= g ==$$

 $mx >>= (\x -> (f x >>= g))$

Slightly more intuitive

Monad laws (2)

- Monad laws just ensure that composing of monadic functions behaves properly
- Can re-write them in terms of the monadic composition operator >=>, which we haven't seen before
- (>=>) :: (a -> m b) -> (b -> m c) -> (a -> m c)
- (This can be found in the module Control.Monad, if you're curious)

Monad laws (3)

- In terms of (>=>), and monadic functions
 - mf :: a -> m b
 - mg :: b -> m c
 - mh :: c -> m d
 - the monad laws become:
- 1) return >=> mf = mf (left identity)
- 2) mf >=> return = mf (right identity)
- 3) mf >=> (mg >=> mh) =
 (mf >=> mg) >=> mh (associativity)

Monad laws (4)

- Haskell doesn't (and can't) enforce the monad laws!
 - it's not that powerful (not a theorem prover!)
- It's up to the designer of every Monad instance to make sure that these laws are valid
- This often strongly determines why a particular monad has the definitions it does for return and (>>=) (especially return)

>>=

- >>= is the "bind" operator
- What does this do, again?
- x >>= f
- >>= "unpacks" component of type a from a value of type m a
- and applies function f to it to get value of type
 m b (since f :: a -> m b)

>=>

- >=> (monadic composition) can trivially be defined in terms of >>=
- $f1 >=> f2 = \x -> (f1 x >>= f2)$
- So >>= (monadic application) is the important concept

>>

>> can also be defined in terms of >>=

$$a >> b = a >>= _ -> b$$

- This is the default
- Used when "contents" or "return value" of monad not needed for next operation
- e.g. putStr :: String -> IO ()
 - () "result" of monad isn't needed for further operations

Monad instances (1)

```
instance Monad Maybe where
 (Just x) >>= f = f x
 Nothing >>= f = Nothing
                  = Just
 return
instance Monad [] where
 lst >>= f = concat (map f lst)
 return x = [x]
-- and IO monad is mostly built-in
```

Monad instances (2)

- So the list polymorphic type is a monad
- And the Maybe polymorphic type is also a monad
- Big deal... what does this buy us?

Maybe monad (1)

Maybe type:

```
data Maybe a = Nothing | Just a
```

- Can be used to represent computations that may fail
- Can use monadic infrastructure to chain together computations that can fail in a nice way

Maybe monad (2)

```
instance Monad Maybe where
  (Just x) >>= f = f x
  Nothing >>= f = Nothing
  return = Just
```

- Meaning?
- Nothing stays Nothing even through >>= operator
- x unpacked from Just x and given to f

Example

- We'll work through an example involving a population of sheep
- This will be a good opportunity to learn more about lamb-das
 - (Thanks to John Wagner for that observation!)
 - Hopefully, nothing ba-a-a-d will happen

Maybe monad (3)

```
data Sheep = ...
father :: Sheep -> Maybe Sheep
father = ...
mother :: Sheep -> Maybe Sheep
mother = ...
```

Maybe monad (4)

```
maternalGrandfather :: Sheep -> Maybe
   Sheep

maternalGrandfather s =
   case (mother s) of
      Nothing -> Nothing
      Just m -> father m
```

Maybe monad (5)

```
mothersPaternalGrandfather :: Sheep -> Maybe
   Sheep
mothersPaternalGrandfather s =
   case (mother s) of
       Nothing -> Nothing
       Just m -> case (father m) of
       Nothing -> Nothing
       Just gf -> father gf
```

 As functions get more complex, this gets uglier and uglier due to nested case statements

Maybe monad (6)

- "Use the monadic way, Luke!"
 - -- Obi-wan Curry

```
maternalGrandfather s =
   (return s) >>= mother >>= father

mothersPaternalGrandfather s =
   (return s) >>= mother >>= father >>= father
```

Maybe monad (7)

Or with syntactic sugar:

```
maternalGrandfather s =
    do m <- mother s
    father m
mothersPaternalGrandfather s =
    do m <- mother s
    f <- father m
    father f</pre>
```

do notation (1)

```
maternalGrandfather s =
   do m <- mother s
   father m</pre>
```

- is equivalent to:
- maternalGrandfather s =
 mother s >>= \m ->
 father m

do notation (2)

mothersPaternalGrandfather s =

```
do m <- mother s
       f <- father m
       father f
is equivalent to:
fathersMaternalGrandmother s =
    mother s >>= \mbox{m} ->
      father m >>= \f ->
         father f
```

do notation (3)

Note: parse:

```
mothersMaternalGrandmother s =
    mother s >>= \mbox{m} ->
      father m >>= \f ->
        father f
 as:
mothersMaternalGrandmother s =
    mother s >>= (\m ->
      father m >>= (\f ->
        father f))
```

Moral

- Monadic form will keep computations involving Maybe types manageable
 - no matter how deeply nested the computations get
- Code is more readable, more maintainable, much less prone to stupid errors

List monad (1)

- Lists can be used to represent functions that can have multiple possible results
 - or no results (empty list)
- Simple example:
 - Take two numbers
 - For each, generate list of numbers within 1 of original number
 - Add two such "fuzzy numbers" together

List monad (2)

Recall...

```
instance Monad [] where
  lst >>= f = concat (map f lst)
  return x = [x]
```

- Meaning?
- Let's work through an evaluation

List monad (3)

```
fuzzy :: Int -> [Int]
fuzzy n = [n-1, n+1]
addFuzzy :: [Int] -> [Int] -> [Int]
addFuzzy f1 f2 = do n1 <- f1
                      n2 < - f2
                      return (n1 + n2)
(fuzzy 10) `addFuzzy` (fuzzy 20)
\rightarrow [28, 30, 30, 32]
```

List monad (4)

desugared version:

```
addFuzzy (fuzzy 10) (fuzzy 20) =
addFuzzy [9, 11] [19, 21] =
  [9, 11] >>= (\n1 ->
  [19, 21] >>= (\n2 ->
  return (n1 + n2)))
```

List monad (5)

```
[9, 11] >>= (\n1 ->
  [19, 21] >>= (\n2 ->
      return (n1 + n2)))

**

[9, 11] >>= (\n1 ->
  [19, 21] >>= (\n2 ->
  [n1 + n2])) -- def'n of return
```

List monad (6)

```
[9, 11] >>= (\n1 ->
  [19, 21] >>= (\n2 ->
     [n1 + n2]))
[9, 11] >>= (\n1 ->
  concat (map (n2 \rightarrow [n1 + n2])
               [19, 21]))
-- def'n of (>>=)
```

List monad (7)

List monad (8)

```
[9, 11] >>= (\n1 ->
  concat [[n1 + 19], [n1 + 21]])

>

[9, 11] >>= (\n1 ->
  [n1 + 19, n1 + 21])

>

concat (map (\n1 -> [n1 + 19, n1 + 21])
  [9, 11])
```

List monad (9)

```
concat (map (n1 -> [n1 + 19, n1 + 21])
            [9, 11])
-
concat [[9 + 19, 9 + 21], [11 + 19, 11 + 21]]
concat [[28, 30], [30, 32]]
[28, 30, 30, 32]
```

And we're done!

List monad (10)

Even better:

```
addFuzzy f1 f2 =
    let vals = do n1 <- f1</pre>
                   n2 < -f2
                   return (n1 + n2)
    in [minList vals, maxList vals]
       where minList = fold11 min
              maxList = foldl1 max
(fuzzy 10) `addFuzzy` (fuzzy 20)
\rightarrow [28, 32]
```

List monad (11)

- List monadic computations are also isomorphic to list comprehensions
- Can add filters to do-notation:

```
do x <- [1..6]
  y <- [1..6]
  if x + y == 7
     then return (x, y)
     else []
--> [(1, 6), (2, 5), (3, 4),
     (4, 3), (5, 2), (6, 1)]
```

References

- "All About Monads" by Jeff Newbern
 - http://www.nomaware.com/monads/html
 - Very in-depth discussion, examples of many different monads
- "Yet Another Monad Tutorial" by me
 - http://mvanier.livejournal.com/3917.html
 - 8-part series (so far!)
 - Incredibly detailed

Next week

- More about monads
 - State monads (very important)
 - MonadZero and MonadPlus type classes