
CS 11 Haskell track: lecture 4

n This week: Monads!



Monads
n Have already seen an example of a monad

n IO monad

n But similar concepts can be used for a lot 
of completely unrelated tasks

n Monads are useful "general interfaces" to 
a wide variety of computational tasks



Monads
n Monads can act as generalized "containers"

n e.g. List monad
n or as generalized "transformers" or 

"actions"
n e.g. IO monad, State monad

n and many other things as well
n Don't get hung up on one viewpoint

n all are valid



Category theory
n The word "Monad" comes from a branch 

of mathematics known as category theory
n However, we won't deal with category theory 

here
n If you're interested in this, I can talk more 

about this off-line
n CT is relevant but not strictly necessary to 

understand Haskell monads



Monads

n Haskell defines a Monad type class like 
this:

class Monad m where
(>>=)  :: m a -> (a -> m b) -> m b
(>>)   :: m a -> m b -> m b
return :: a -> m a
fail   :: String -> m a 



Monads

n What does this mean?
class Monad m where
(>>=)  :: m a -> (a -> m b) -> m b
(>>)   :: m a -> m b -> m b
return :: a -> m a
fail   :: String -> m a 



Monads

n Let's ignore (>>) and fail for now
class Monad m where
(>>=)  :: m a -> (a -> m b) -> m b
(>>)   :: m a -> m b -> m b
return :: a -> m a
fail   :: String -> m a 



Effects

n To explain further, we need to talk about 
the notion of functions with "effects"

n "Effects" may include input/output (IO 
monad), manipulating local or global state 
(State monad), raising exceptions (Error 
monad), possible failure (Maybe monad), 
or returning multiple values (List monad)
n or other possibilities!



Functions and effects (1)
n There are many kinds of "functions" or 

function-like actions that we might want 
to do that have effects beyond mapping 
specific inputs to specific outputs



Functions and effects (2)
n A normal function has the signature        
a -> b, for some types a and b

n If such a function also had some kind of 
"effect" (call it E), then we might write this 
as:

n a --[E]--> b
n I'll refer to functions with effects as 

"monadic functions"



Functions and effects (3)
n A normal function of type a -> b can be 

composed with a function of type b -> c 
to give a function of type a -> c

n How would be compose a function with 
effects (monadic function) with another 
such function?

n How do we compose a --[E1]--> b 
with b --[E2]--> c to give a function  
a --[E1,E2]--> c?



Functions and effects (4)
n Haskell represents functions with effects 

i.e. a --[E]--> b as having the type    
a -> E b where E is some kind of a 
monad (like IO)
n We'll write m instead of E from now on

n So we need to figure out how to compose 
functions of type a -> m b with functions 
of type b -> m c to get functions of type 
a -> m c



Functions and effects (5)
n Being able to compose functions with 

effects is critical, because we want to be 
able to build larger effectful functions by 
composing smaller effectful functions

n Example: chaining together functions that 
read input from the terminal (in the IO 
monad) to functions that write output to 
the terminal (in the IO monad)



Functions and effects (6)
n We want to compose functions with types

n f1 :: a -> m b
n f2 :: b -> m c

n to get a function with type a -> m c
n We can pass a value of type a to f1 to 

get a value of type m b
n Then we need to somehow take the m b 

value, unpack a value of type b and pass 
it to f2 to get the final m c value



Functions and effects (7)
n How do we take the m b value, unpack a 

value of type b and pass it to f2 to get the 
final m c value?

n The answer is specific to every monad
n For IO it's kind of "magical"; the system takes 

care of it
n This is why there is the >>= function in the 
Monad type class, with the type signature 
m a -> (a -> m b) -> m b



Functions and effects (8)
n Note: the type signature:

n m a -> (a -> m b) -> m b
n is the same as:

n m b -> (b -> m c) -> m c
n (just change the type variable names)

n so this is indeed what we want



Functions and effects (9)
n The bind operator:

n (>>=) :: m a -> (a -> m b) -> m b
n is thus a kind of "monadic apply operator" 

which takes a "monadic value" (of type    
m a), unpacks a value of type a 
somehow, and feeds it to the "monadic 
function" (of type a -> m b) to get the 
final monadic value (of type m b)



Functions and effects (10)
n The bind operator:

n (>>=) :: m a -> (a -> m b) -> m b

n is part of the Monad type class, so it has a 
separate (overloaded) definition for every 
instance of the Monad type class
n such as IO, State, Error, Maybe, List, 

etc.



Monad definition again

class Monad m where
(>>=)  :: m a -> (a -> m b) -> m b
return :: a -> m a

n Note that instances of Monad (i.e. m) must be 
polymorphic type constructors
n m is a type constructor, m a is a type

n Whereas instances of Eq, Ord etc. are just regular 
types (not type constructors)



Monad definition again

n N.B. IO is a type constructor, so IO can substitute 
for m here:
instance Monad IO where
  (>>=) :: IO a -> (a -> IO b) -> IO b
  (definition omitted)
  return :: a -> IO a
  (definition omitted)



Monad laws

n Haskell's monads must obey these laws:
1) (return x) >>= f  ==  f x 
2) mx >>= return     ==  mx 
3) (mx >>= f) >>= g  == 
   mx >>= (\x -> f x >>= g)
n (1) and (2) are sorta-kinda identity laws
n (3) is sorta-kinda an associative law
n (here, mx is a value of type m x)



Note

3) (mx >>= f) >>= g  == 
   mx >>= (\x -> f x >>= g)
n Can write this as:
3) (mx >>= (\x -> f x)) >>= g  == 
   mx >>= (\x -> (f x >>= g))
n Slightly more intuitive



Monad laws (2)

n Monad laws just ensure that composing of 
monadic functions behaves properly

n Can re-write them in terms of the monadic 
composition operator >=>, which we haven't seen 
before

n (>=>) :: (a -> m b) -> (b -> m c) ->    
(a -> m c)

n (This can be found in the module 
Control.Monad, if you're curious)



Monad laws (3)
n In terms of (>=>), and monadic functions

n mf :: a -> m b
n mg :: b -> m c
n mh :: c -> m d
n the monad laws become:

n 1) return >=> mf = mf  (left identity)
n 2) mf >=> return = mf  (right identity)
n 3) mf >=> (mg >=> mh) =                          
(mf >=> mg) >=> mh  (associativity)



Monad laws (4)
n Haskell doesn't (and can't) enforce the monad 

laws!
n it's not that powerful (not a theorem prover!)

n It's up to the designer of every Monad instance to 
make sure that these laws are valid

n This often strongly determines why a particular 
monad has the definitions it does for return and 
(>>=) (especially return)



>>=

n >>= is the "bind" operator
n What does this do, again?
n x >>= f
n >>= "unpacks" component of type a from a value 

of type m a 
n and applies function f to it to get value of type    
m b (since f :: a -> m b)



>=>

n >=> (monadic composition) can trivially be defined 
in terms of >>= 

n f1 >=> f2  =  \x -> (f1 x >>= f2)
n So >>= (monadic application) is the important 

concept



>>

n >> can also be defined in terms of >>=
a >> b = a >>= \_ -> b
n This is the default
n Used when "contents" or "return value" of monad 

not needed for next operation
n e.g. putStr :: String -> IO ()

n () "result" of monad isn't needed for further operations



Monad instances (1) 

instance Monad Maybe where
(Just x) >>= f   =  f x
Nothing  >>= f   =  Nothing
return           =  Just

instance Monad [] where
  lst >>= f = concat (map f lst)
return x = [x]

-- and IO monad is mostly built-in



Monad instances (2) 

n So the list polymorphic type is a monad
n And the Maybe polymorphic type is also a 

monad
n Big deal... what does this buy us?



Maybe monad (1) 

n Maybe type:
data Maybe a = Nothing | Just a
n Can be used to represent computations that 

may fail
n Can use monadic infrastructure to chain 

together computations that can fail in a nice 
way 



Maybe monad (2)

instance Monad Maybe where
(Just x) >>= f   =  f x
Nothing  >>= f   =  Nothing
return           =  Just

n Meaning?
n Nothing stays Nothing even through >>= 

operator
n x unpacked from Just x and given to f



Example

n We'll work through an example involving a 
population of sheep

n This will be a good opportunity to learn 
more about lamb-das
n (Thanks to John Wagner for that observation!)
n Hopefully, nothing ba-a-a-d will happen



Maybe monad (3) 

data Sheep = ... 
father :: Sheep -> Maybe Sheep 
father = ... 
mother :: Sheep -> Maybe Sheep

mother = ... 



Maybe monad (4) 

maternalGrandfather :: Sheep -> Maybe 
Sheep 

maternalGrandfather s = 
    case (mother s) of 
         Nothing -> Nothing 
         Just m  -> father m 



Maybe monad (5) 

mothersPaternalGrandfather :: Sheep -> Maybe 
Sheep 

mothersPaternalGrandfather s = 
    case (mother s) of 
         Nothing -> Nothing 
         Just m -> case (father m) of 
                        Nothing -> Nothing 
                        Just gf -> father gf 
n As functions get more complex, this gets uglier 

and uglier due to nested case statements



Maybe monad (6) 

n "Use the monadic way, Luke!"
-- Obi-wan Curry

maternalGrandfather s = 
  (return s) >>= mother >>= father

mothersPaternalGrandfather s = 

  (return s) >>= mother >>= father >>= father 



Maybe monad (7) 

n Or with syntactic sugar:
maternalGrandfather s =
    do m  <- mother s
       father m
mothersPaternalGrandfather s = 
    do m <- mother s
       f <- father m
       father f



do notation (1)

n maternalGrandfather s =
    do m <- mother s
       father m
n is equivalent to:
n maternalGrandfather s =
    mother s >>= \m ->
      father m



do notation (2)

mothersPaternalGrandfather s = 
    do m <- mother s
       f <- father m
       father f

n is equivalent to:
fathersMaternalGrandmother s = 
    mother s >>= \m ->
      father m >>= \f ->
        father f



do notation (3)
n Note: parse:
mothersMaternalGrandmother s = 
    mother s >>= \m ->
      father m >>= \f ->
        father f

n as:
mothersMaternalGrandmother s = 
    mother s >>= (\m ->
      father m >>= (\f ->
        father f))



Moral

n Monadic form will keep computations 
involving Maybe types manageable
n no matter how deeply nested the computations 

get
n Code is more readable, more maintainable, 

much less prone to stupid errors



List monad (1)

n Lists can be used to represent functions 
that can have multiple possible results
n or no results (empty list)

n Simple example:
n Take two numbers
n For each, generate list of numbers within 1 of 

original number
n Add two such "fuzzy numbers" together



List monad (2)

n Recall...
instance Monad [] where
  lst >>= f = concat (map f lst)
return x = [x]

n Meaning?
n Let's work through an evaluation



List monad (3)

fuzzy :: Int -> [Int]
fuzzy n = [n-1, n+1]
addFuzzy :: [Int] -> [Int] -> [Int]
addFuzzy f1 f2 = do n1 <- f1
                    n2 <- f2
                    return (n1 + n2)
(fuzzy 10) `addFuzzy` (fuzzy 20)

à [28, 30, 30, 32]



List monad (4)

n desugared version:
addFuzzy (fuzzy 10) (fuzzy 20) =
addFuzzy [9, 11] [19, 21] =  
  [9, 11] >>= (\n1 ->
    [19, 21] >>= (\n2 ->
      return (n1 + n2)))



List monad (5)

[9, 11] >>= (\n1 ->
  [19, 21] >>= (\n2 -> 
     return (n1 + n2)))
è
[9, 11] >>= (\n1 ->
  [19, 21] >>= (\n2 -> 
     [n1 + n2])) -- def'n of return



List monad (6)

[9, 11] >>= (\n1 ->
  [19, 21] >>= (\n2 -> 
     [n1 + n2]))
è
[9, 11] >>= (\n1 ->
  concat (map (\n2 -> [n1 + n2])
              [19, 21]))
-- def'n of (>>=)



List monad (7)

[9, 11] >>= (\n1 ->
  concat (map (\n2 -> [n1 + n2])
              [19, 21]))
è
[9, 11] >>= (\n1 ->
  concat [[n1 + 19], [n1 + 21]])



List monad (8)

[9, 11] >>= (\n1 ->
  concat [[n1 + 19], [n1 + 21]])

è
[9, 11] >>= (\n1 ->
  [n1 + 19, n1 + 21])

è
concat (map (\n1 -> [n1 + 19, n1 + 21])
            [9, 11])



List monad (9)

concat (map (\n1 -> [n1 + 19, n1 + 21])
            [9, 11])

è
concat [[9 + 19, 9 + 21], [11 + 19, 11 + 21]]

è
concat [[28, 30], [30, 32]]

è
[28, 30, 30, 32]

n And we're done!  



List monad (10)

n Even better:
addFuzzy f1 f2 = 
    let vals = do n1 <- f1
                  n2 <- f2
                  return (n1 + n2)
    in [minList vals, maxList vals]
       where minList = foldl1 min
             maxList = foldl1 max
(fuzzy 10) `addFuzzy` (fuzzy 20)
à [28, 32]



List monad (11)

n List monadic computations are also isomorphic to 
list comprehensions

n Can add filters to do-notation:
do x <- [1..6]
   y <- [1..6]
   if x + y == 7 
      then return (x, y) 
      else []
--> [(1, 6), (2, 5), (3, 4), 
     (4, 3), (5, 2), (6, 1)]



References

n "All About Monads" by Jeff Newbern
n http://www.nomaware.com/monads/html
n Very in-depth discussion, examples of many 

different monads
n "Yet Another Monad Tutorial" by me

n http://mvanier.livejournal.com/3917.html
n 8-part series (so far!)
n Incredibly detailed



Next week

n More about monads
n State monads (very important)
n MonadZero and MonadPlus type 

classes


