
CS 11 Haskell track: lecture 2
 This week:

 More basics
 Algebraic datatypes
 Polymorphism
 List functions
 List comprehensions
 Type synonyms
 Introduction to input/output (I/O)
 Compiling standalone programs

let and where (1)

 let:
factorial :: Int -> Int
factorial n =
 let iter n r =
 if n == 0 then r
 else iter (n-1) (n*r)
 in
 iter n 1

let and where (2)

 where:
factorial :: Int -> Int
factorial n = iter n 1
 where
 iter n r =
 if n == 0 then r
 else iter (n-1) (n*r)

let and where (3)

 where (nicer):
factorial :: Int -> Int
factorial n = iter n 1
 where
 iter 0 r = r
 iter n r = iter (n-1) (n*r)

Lambda (λ) expressions

 Used to create anonymous functions
\<pattern> -> <expr>
 Usually just e.g.
\x -> 2*x
\x y -> x + y
 Pattern example:
map (\(x, y) -> x + y)
 [(1, 2), (4, 1), (-3, 20)]
 [3, 5, 17]

Operator slices
 Instead of writing
\x -> x + 1
 you can just write:
(+1)
 Similarly, instead of writing
\x -> 2 * x
 you can write:
(2*)
 Example:
map (2*) [1..5]  [2,4,6,8,10]

case expressions (1)

 Used for pattern matches within expressions
 Syntax:
 case <expr> of
 <pattern1> -> <expr1>
 <pattern2> -> <expr2>
 ...
 If want a default, use _ (wildcard) as last pattern
 _ matches anything and throws the value away

case expressions (2)

 Example:
zeros :: [Int] -> [Int]
zeros lst =
 case lst of
 (_ : rest) -> 0 : zeros rest
 [] -> []
 (Not terribly useful)
 Could also use pattern matching on function itself

Algebraic datatypes (1)

 Often want to define own data types to express
the structure of some kind of data

 Often the data can be in one of several alternative
forms

 Create an algebraic datatype for this
 Many already provided in standard library

 AKA the Prelude

Algebraic datatypes (2)

 Example:
data MaybeInt = NoInt | AnInt Int
let (x, y, z) = (NoInt, AnInt 2, AnInt 5)

 N.B. type names and data constructor names
must start with capital letter!

 Type of (x, y, z)?
 (MaybeInt, MaybeInt, MaybeInt)

Algebraic datatypes (3)
 N.B. Can't define new datatypes in ghci
 Best to put into file and load using :l file.hs
 Might want to have a more general type than
MaybeInt
 the Maybe concept works just as well for any type
 expresses concept of "not sure if will have anything,

but if we do it'll be of this type"
 Don't want to have to define MaybeInt,
MaybeFloat, MaybeString...

 All have same structure

Polymorphism (1)
 Data types can be parameterized over other types
 So for Maybe example we have (built-in):

data Maybe a = Nothing | Just a

 Here a is a type variable
 Written with an initial lower-case letter

Polymorphism (2)
 Types:

 Nothing :: Maybe a
 Just 10 :: Maybe Int
 Just "hi there!" :: Maybe String
 Just :: a -> Maybe a

 Parameterized type constructors are also
functions!

map Just [1..5]
 [Just 1, Just 2, ..., Just 5]

Example

length :: [a] -> Int

length [] = 0

length (x:xs) = 1 + length xs

 Works for any list

More pattern matching
 Pattern matching on algebraic data types:
foo :: Maybe Int -> Int
foo Nothing = 0
foo (Just x) = 1 + x

bar :: Maybe (Maybe String) -> String
bar Nothing = "None"
bar (Just Nothing) = "Sorta"
bar (Just (Just x)) = "Yes: " ++ x
-- N.B. ++ concatenates lists

Lists
 Lists behave as if they were defined like this:
-- WARNING: Bogus pseudo-Haskell:
data [a] = [] | a : [a]
 Note that (:) is a data constructor just like Just
 Pattern matching on lists:
head :: [a] -> Maybe a
head (x : _) = Just x
head [] = Nothing
 N.B. the parentheses are important!

As-patterns (@-patterns)

 You can assign a name to a pattern while also
matching its parts

 Example:
foo :: Maybe Int -> Maybe Int
foo x@(Just y) = x
foo Nothing = Nothing
 This looks useless now, but becomes useful when

patterns get more complicated

List functions and the Prelude

 The Haskell Prelude is where the most basic
functions are defined

 Always available to the programmer
 Includes many useful list functions
 Often fairly obvious what they do from the type

signature

Useful list functions

 Examples:
(++) :: [a] -> [a] -> [a] –- list concat
map :: (a -> b) -> [a] -> [b]
filter :: (a -> Bool) -> [a] -> [a]
head :: [a] -> a -- not like one we defined
foldr :: (a -> b -> b) -> b -> [a] -> b
repeat :: a -> [a]
cycle :: [a] -> [a]

map

 map f lst applies f to each element of
lst, returning the results

map :: (a -> b) -> [a] -> [b]
map f (x:xs) = f x : map f xs
map _ [] = []

map (/2) [1..3]  [0.5, 1.0, 1.5]

foldr ("fold right")

 foldr op z [x1,x2, ... xn] reduces
the list by computing

x1 `op` (x2 `op` ... (xn `op` z))
 Definition left as "exercise for student"
sum :: [Int] -> Int
sum = foldr (+) 0
 Pop quiz: what is foldr (:) [] ?

More list functions (1)
 concat :: [[a]] -> [a]
 take :: Int -> [a] -> [a]
 drop :: Int -> [a] -> [a]
 elem :: a -> [a] -> Bool
-- usually written as
-- 5 `elem` [1..10]
 zip :: [a] -> [b] -> [(a, b)]

More list functions (2)

 Many more list functions in Prelude
 Use Prelude functions instead of

reimplementing them yourself
 read Prelude docs (linked from web pages)

List comprehensions (1)

 List comprehensions are a convenient way to
create lists with particular properties

fibs :: [Integer]
fibs = 0:1:[x+y|(x,y) <- zip fibs (tail fibs)]

 Infinite list of fibonacci numbers
 To get first 20, do
take 20 fibs

List comprehensions (2)

 General structure:
[<expr> | pattern <- source ...,
 filter ...]

 Examples:
[x | x <- [1..1000], x `mod` 2 == 1]
[(x, y) | x <- [1..10], y <- [1..10],
 x + y == 10]

Type synonyms

 Can create a synonym for a type
 Compiler can't always figure out the right

name to use (e.g. in ghci) , but it tries
 Examples:
type String = [Char] -- in the Prelude
type Label = String
type Point = (Double, Double)

Introduction to I/O (1)

 Input/output is odd in Haskell
 Can't have side effects!
 Input/output actions are values of type
IO a, where a is the type of the action's
result

 Actions with no useful result have type IO ()
 () is the sole instance of the unit type

Introduction to I/O (2)

 Examples:
putStr :: String -> IO ()
putStrLn :: String -> IO ()
getLine :: IO String
print :: a -> IO ()
 Our first encounter with dreaded Monads

 Much more to say about this in future
 Entire program is a computation of type IO ()

Compiling standalone programs

 Create a main function with type IO ()
 Compile the program with
% ghc –o progname filename.hs
 Run the program:
% progname
 Hit ctrl-C if the program doesn't terminate

Next week

 Much more on I/O

 Type classes

