
CS 11 Haskell track: lecture 1
n This week:

n Introduction/motivation/pep talk

n Basics of Haskell

Prerequisite
n Knowledge of basic functional programming

n e.g. Scheme, Ocaml, Erlang

n CS 1, CS 4

n "permission of instructor"

n Without this, course will be pretty hard

Quote

"Any programming language that doesn't
change the way you think about
programming is not worth learning."

 -- Alan Perlis

Why learn Haskell? (1)

n Pound for pound, Haskell has more novel
concepts than any programming language I've
ever seen
n and I've seen 'em all

n Very powerful and innovative type system
n Extremely high-level language
n Will make you smarter
n Fun to program in!

Why learn Haskell? (2)

n Very elegant and concise code:
quicksort :: (Ord a) => [a] -> [a]
quicksort [] = []
quicksort (x:xs) =
 quicksort lt ++ [x] ++ quicksort ge
 where
 lt = [y | y <- xs, y < x]
 ge = [y | y <- xs, y >= x]

n Works for any orderable type

n Any problem that can be characterized as a
transformation

n Compilers
n DSLs (Domain-Specific Languages)
n Implementing mathematical/algebraic

concepts
n Theorem provers

What Haskell is good at

n Any problem that requires extreme speed
n unless you use Haskell to generate C code

n Any problem that is extremely stateful
n e.g. simulations
n though monads can get around this to some

extent

What Haskell is not good at

n Haskell is a programming language
n duh

n A functional programming language
n you all know what that is

n A lazy functional programming language
n Has strong static typing

n every expression has a type
n all types checked at compile time

What is Haskell, anyway?

n Named after Haskell Curry

n pioneer in mathematical logic

n developed theory of combinators

n S, K, I and fun stuff like that

What is Haskell, anyway?

n Lazy evaluation means expressions (e.g.
function arguments) are only evaluated
when needed

n As opposed to strict evaluation, where
arguments to a function are always
evaluated before applying the function

n What does this mean in practice?

Laziness (1)

n Lazy evaluation can do anything strict
evaluation can do
n and will get the same answer

n Lazy evaluation can also do things strict
evaluation cannot do

n Seems like a minor point, but...
n Has a profound impact on the way

programs are written

Laziness (2)

n Example:
let f x = 10
f (1/0)
n In strict language, this causes an error
n In lazy language this returns 10

n 1/0 is never evaluated, because it wasn't needed

n Big deal, right?

Laziness (3)

n Finite list of integers:
let one_to_ten = [1..10]
n Can do this in either lazy or strict language

n Infinite list of integers:
let positive_ints = [1..]
n Can only do in lazy language

Laziness (4)

n What can we do with this?
let positive_ints = [1..]
let one_to_ten = take 10 positive_ints
n Now the first ten positive_ints are evaluated

n because we needed them to compute one_to_ten

n The rest are still in unevaluated form
n Details of this are handled by the system

Laziness (5)

n Allows many programs to be written in a
more elegant/concise manner than would
otherwise be the case

n Can be costly (wrap closures around each
expression to delay evaluation)

n Means evaluation order cannot be specified
n because we don't know which arguments of a

function call will be evaluated ahead of time

Why lazy evaluation?

n Lazy evaluation is a "side effect" (pun intended)
of having a pure functional language

n Scheme, Lisp, Ocaml are impure functional
languages
n also support side-effecting computations

n Pure functional languages support "equational
reasoning"

n Means substitution model of evaluation holds
n recall CS 4
n no messy environment model to worry about

Why lazy evaluation?

n Equational reasoning means programs are much
easier to reason about
n e.g. to prove correctness

n Functions are "referentially transparent"
n i.e. they're black boxes
n a given input will always produce same output
n large classes of bugs that cannot happen!

n No side effects!

Equational reasoning

n No side effects means:
n No assignment statements
n No mutable variables
n No mutable arrays
n No mutable records
n No updatable state at all!
n "How do you guys live like this?"

n Need alternative ways of doing things

No side effects!

n Haskell, like Lisp/Scheme and ML (Ocaml, Standard
ML), is based on Church's lambda (λ) calculus

n Unlike those languages, Haskell is pure (no
updatable state)

n Haskell uses "monads" to handle stateful effects
n cleanly separated from the rest of the language

n Haskell "enforces a separation between Church and
State"

Haskell vs. Scheme/ML

n Functional data structures are
automatically persistent

n Means that can't change a data
structure
n but can produce a new version based on

old version
n new and old versions co-exist

Persistence (1)

n Persistence eliminates large classes of
bugs...

n ... but also means that many standard data
structures are unusable
n arrays, doubly-linked lists, hash tables

n Persistent data structures
n singly-linked lists, trees, heaps

n Can be less efficient
n but generally no worse than log(n) hit

Persistence (2)

n Pure FP is kind of a programming "religion"
n Requires learning new ways to do things,

new disciplines
n Rewards:

n fewer bugs
n greater productivity
n higher level of abstraction
n more fun!

Pure functional programming

n We'll see concrete examples of all these
vague points as we go along

n Now, on to practical matters...

End of pep talk

n Haskell is a compiled language like C, java,
or ocaml

n Compiler we'll use is ghc
n the Glorious Glasgow Haskell Compiler
n state-of-the-art, many language extensions
n mostly written in Haskell (some C)

n Initially, mainly use interactive interpreter
n ghci (for "ghc interactive")

Using Haskell

n ghci is a very useful learning/debugging
tool

n But can't write everything in ghci that could
be written in a Haskell program
n e.g. definitions of new types

n Better approach: write code in files and
load into ghci, then experiment with
functions interactively

ghci

n Now will give a whirlwind introduction to
most basic features of Haskell

n Much will not be covered until future weeks

Introduction to the language

n Topics
n basic types, literals, operators, and expressions
n type annotations
n aggregate types: tuples, lists
n let bindings, conditionals
n functions and function types
n patterns, guards

Introduction to the language

n First: how to write comments?
-- This is a single-line comment.
-- So is this.
{- This is a
 multi-line comment. -}
{- Multi-line comments
 {- can nest! -}
 unlike in most other languages. -}

Comments

n Literals:
n 0 5 (-1) 3.14159 'c'

n Operators:
n 7 + 9

n Function application:
n abs (-4)
n sqrt 4.0

Simple expressions

n Can annotate types using :: syntax:
n 10 :: Int

n This declares that 10 is an object of type Int
n All type names start with capital letter
n Normally don't declare most types

n compiler infers them (type inference)
n usually annotate function signatures anyway

Types and type annotations

n Int – fixed-precision integer
n Integer – arbitrary-precision integer
n Float – single-precision float point number
n Double – double-precision floating point
n Char – Unicode character

n Char literals written between single quotes
n 'l' 'i' 'k' 'e' ' ' 't' 'h' 'i' 's'

Common primitive types

n Bool – boolean truth value
n either True or False
n actually an algebraic data type (next week)

n String
n actually a list of Chars

Common derived types

n Can ask ghci to determine a type for you:
Prelude> :t 10
10 :: (Num t) => t
Prelude> :t (10 :: Int)
(10 :: Int) :: Int
n Note that numerical types more complicated

than you might think (more on this later)

Types and ghci

n Tuples – an ordered sequence of pre-existing types
of a fixed length

n e.g. (Int, Float, String) is a tuple type
n (42, 3.14159, "Hello, world!") ::
(Int, Float, String)

n Also a type which looks like an empty tuple:
n ()
n Actually the sole representative of the () type,

also called "unit" (but it's not a tuple!)

Common aggregate types (1)

n Lists – an ordered sequence of a single type
of an arbitrary (non-negative) length

n Empty list: []
n Lists of Ints:

n [1, 2, 3]
n could write as 1 : 2 : 3 : []
n : here is the "cons" (list construction) operator

n List ranges: [1..10], [1,3..10], [1..]

Common aggregate types (2)

n List type names also written with []
n [1, 2, 3] :: [Int]
n ['h', 'e', 'l', 'l', 'o'] :: [Char]
n "hello" :: [Char]
n "hello" :: String

n n.b. String and [Char] are equivalent

Common aggregate types (3)

n Haskell has let expressions like in Scheme or
Ocaml:
let

 y = x + 2
 x = 5

in
 x / y

n Really like Scheme letrec (mutually recursive)
n Not assignments!

let expressions

n Many expressions can be written with
indentation to delineate boundaries
n sort of like python (but better)
n always an equivalent non-indented form
n "offside rule"

Syntax note

let
y = x + 2
x = 5

in
 x / y

n same as:
let y = x + 2; x = 5 in x / y

Example

n if a == b then "foo" else "bar"
n Conditional expression must evaluate to a

value
n Unlike e.g. C, where if expression used for

side effects
n We have no side effects!

n Both branches of conditional must evaluate to
same type

Conditional expressions

n Function types are written in the form
a -> b

n where a and b are type names
sqrt :: Float -> Float
(>) :: Integer -> Integer -> Bool
n Actual types are slightly more general and

complex
n e.g. sqrt :: (Floating a) => a -> a

Function types (1)

n Functions of multiple arguments have types
like this: a -> b -> c

n Not a syntax trick!
n Functions are automatically curried
n Function of two args a and b, returning c

n is actually a function of one arg a
n which returns a function of one arg b
n which returns c

Function types (2)

n Operators are actually functions with special
syntax

n Can convert operator into 2-arg function by
surrounding with parentheses

2 + 2 same as (+) 2 2
n Can also convert 2-arg function into operator

by surrounding with backquotes
101 `mod` 2 same as mod 101 2

Operators and functions

n Simple function definition:
add :: Int -> Int -> Int
add x y = x + y
n add is a function of two Int arguments

returning an Int
n really a function of one Int argument returning?
n a function of one Int returning an Int

Defining functions (1)

n Not the same as:
add :: (Int, Int) -> Int
add (x, y) = x + y
n This add is a function of one argument,

which is a tuple of two Ints
n still returns an Int

Defining functions (2)

n Names on LHS of an equation are actually patterns
n Args of function matched against formal args by

pattern matching
n Can have multiple equations, each with different

pattern to match
factorial :: Integer -> Integer
factorial 0 = 1
factorial n = n * factorial (n – 1)
n N.B. Use recursion for loops (if needed)

Patterns (1)

n Patterns are tried starting with first equation
n if that doesn't match, then second equation, etc. etc.

n Patterns may include
n constants like 0 or []
n names like n
n structures like lists or tuples
n more things you'll see as we proceed

Patterns (2)

n A pattern can include guards to specify non-
structural aspect of thing to be matched

n Guards must have type Bool
n Guards tried in order until one returns True
abs :: Integer -> Integer
abs 0 = 0
abs x | x < 0 = -x -- '|' starts a guard
 | otherwise = x

Pattern guards

sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs
foo :: [Integer] -> String
foo [1,2,3] = "Hey!"
foo [4,x,7] = if x > 0 then "Whoa!"
 else "Hi!"
foo [] = "Nothing"
foo z = "Something else"

List patterns

bar :: (Integer, String) -> String
bar (0, "hello") = "world"
bar (0, x) = x
bar (x, "foo") = "foo"
bar (x, y) = "who cares?"
n Lists and tuples get destructured during pattern

matching if necessary

Tuple patterns

n Algebraic datatypes
n Polymorphic types
n @ patterns and _ patterns
n case expressions
n Lambda expressions
n Operator slice notation

Next week (1)

n Useful list functions and the Prelude
n List comprehensions
n Type synonyms
n The IO monad and input/output
n Compiling stand-alone programs

Next week (2)

