
Winter 2012-2013 
Lecture 5 



}  Normally need to know a process’ PID to interact 
with it 

}  Can also register a process under a global name 
◦  register(Name, Pid) 
�  Name must be an atom 

}  If Name isn’t already registered, Pid is associated 
with Name, and true is returned 

}  If Name is already registered, register() reports 
an error 

}  Once a process is registered, can use Name atom 
directly in send operations 
◦  Name ! Expr. 



}  Echo server: 
-module(echo). 
-export([server/0]). 
 
server() -> 
    receive 
        M -> io:format("~nReceived:  ~p~n", [M]) 
    end, 
    server(). 

}  Start and register the echo server: 
Pid = spawn(echo, server, []), 
register(echo_server, Pid). 
◦  Could also put spawn() call inside register() call 



}  Once echo server is started and registered, 
can send messages using echo_server atom 
�  echo_server ! {hello, world}. 
◦  Prints: 
�  Received:  {hello, world} 

}  Note 1:  This form of send can fail! 
◦  If atom before send-operator ! is not a registered 

process name, then an error is reported 
}  Note 2:  Registered procs are automatically 

unregistered when they terminate. 



}  unregister(Name) 
◦  Name is an atom 
◦  Unregisters the process with the specified Name 
◦  Reports error if no process registered under Name 

}  whereis(Name) 
◦  If a process is registered under Name, returns its PID 
◦  Otherwise, returns the atom undefined 

}  registered() 
◦  Returns a list of the names of all registered 

processes 



}  In distributed Erlang clusters, registered 
processes are local to a single node 

}  Be careful with registered processes in large-
scale software systems! 
◦  To handle heavy load, should be able to parallelize 

every critical part of the system… 
◦  A registered process may represent a scalability 

bottleneck in your system 
◦  In these cases, registered process should respond 

to requests as quickly as possible 
◦  Better yet, find ways to parallelize its operation too 



}  Two processes can be linked together 
◦  When one of the processes exits, the linked process 

receives a notification 
◦  Allows a process to monitor the status of another 

process, and handle termination signals 
�  e.g. it could stop itself, or restart the dead process 

}  Linking is bidirectional 
◦  Either process can initiate the link 
◦  Multiple link requests are ignored 

}  Of course, a process can link to multiple 
processes 



}  Use link(Pid) to link to another process 
◦  Links together processes self() and Pid 
◦  unlink(Pid) will remove the link 
◦  Note:  No way to link two other processes together! 

}  Example:  start and monitor an RSS queue 
Queue = spawn(rss_queue, server, ["http://..."]), 
link(Queue). 

}  Can also use spawn_link() to do in one step 
Queue = spawn_link(rss_queue, server, ["http://..."]). 

◦  Same versions of spawn_link as there are spawn 
�  e.g. some take funs, some take module/function/args 



}  To understand process linking, also need to 
understand process termination 

}  Processes always terminate with an exit reason 
◦  Some value indicating why the process terminated 

}  If a process’ function returns, exit reason is the 
atom normal 

}  Errors cause an exit reason of {Reason,Stack} 
◦  Info about the error, as well as what code was running 
◦  (You have definitely seen these in the Erlang shell.  J) 

}  Can use exit(Reason) BIF to terminate process 
◦  Can specify an appropriate reason in the call 



}  When two processes are linked, termination 
of one causes an exit signal to be sent to the 
other 
◦  Either the atom normal, or an abnormal termination 

signal (anything other than normal) 
}  Default behavior of linked processes: 
◦  Linked process will receive the exit signal 
◦  If the reason is normal, then signal is ignored 
◦  Otherwise, the linked process terminates with the 

same exit signal 
�  If other processes are linked to this process, exit signal 

propagates to these processes as well, etc. 



}  To handle abnormal exit signals robustly, 
need to trap all exit signals 
◦  process_flag(trap_exit, true) 
◦  Should be called within the process, before linking! 
◦  After this, process will receive messages for exit 

signals 
�  {'EXIT', FromPid, Reason} 
�  Note that 'EXIT' is an atom 
◦  Process can handle the exit signal however it wants 
�  Can restart the process that died, can exit itself, etc. 



}  Example code: 
Pid = spawn_link(rss_queue, server, ...), 
process_flag(trap_exit, true) 

}  Problems? 
◦  What if linked process dies before process_flag 

call completes? 
◦  Spawned process could die before you trap exit 

signals… 
◦  Since you’re linked to the other process, it would 

kill you too 
}  Moral:  Always trap exit signals first, before 

setting up links to other processes! 



}  A second form of exit function: 
◦  exit(Pid, Reason) 
◦  Sends an exit signal to the specified process, with 

the specified reason 
◦  The sending process does NOT exit! 
◦  Used to “fake” an exit signal, or to kill a process 

}  If receiving process isn’t trapping exit signals 
◦  If reason is normal then exit signal is ignored 
◦  If reason is not normal then receiver will also exit 

with the signal/reason that was sent 
}  If receiver is trapping exit signals, just gets 

another {'EXIT', Pid, Reason} message 



}  kill is an untrappable exit signal 
}  kill will always terminate a process 
◦  …regardless of whether process is trapping exit 

signals or not! 
◦  Used to handle unresponsive or runaway processes 

}  When process dies, kill signal does not 
propagate directly to linked processes! 
◦  Linked processes receive a killed reason, not a 
kill reason 
◦  Otherwise, too many processes could end up being 

killed! 



}  Also possible to create one-way links to other 
processes 
◦  One process Pid1 monitors another process Pid2 
◦  Process Pid2 isn’t notified if Pid1 terminates 

}  Use special method: 
◦  erlang:monitor(process, Pid) 
◦  Not automatically imported into every module 
◦  Must use qualified name, or explicitly import it 

}  Function returns a Ref (reference) value 
◦  Produced by make_ref/0 
◦  Simply a unique value generated by Erlang platform 
◦  (as unique as possible; does repeat after ~282 calls) 



}  Reference value serves to identify a particular 
monitor link 

}  Like exit-signal trapping, monitoring process 
receives a message: 
◦  {'DOWN', Ref, process, Pid, Reason} 

}  A process can monitor another process 
multiple times 
◦  Each call produces a separate one-way link, with its 

own Ref value 
◦  If monitored process terminates, listening process 

is informed once for each monitor-call it made! 



}  Can unmonitor a process by calling 
◦  erlang:demonitor(Ref) 

}  Can specify process to monitor using its PID 
}  Or, if process is registered, can use its name 



}  Erlang has two mechanisms for exception 
handling 

}  The simple version: 
◦  catch Expr 

}  If the expression Expr doesn’t throw, catch 
evaluates to Expr result 

}  If Expr throws, catch evaluates to the value of 
the exception 

}  Throw an exception using throw(Expr) BIF 
◦  Argument can be any expression 



}  A simple function that throws: 
-module(m). 
-export([compute_value/1]). 
 
compute_value(N) -> 
   if 
      N < 3 -> 
         throw({badarg, "N must be at least 3."}); 
      true -> 
         math:sqrt(N – 3) 
   end. 

}  Function throws if passed a value less than 3 



}  Using our new function: 
1> m:compute_value(12). 
3.00000 
2> m:compute_value(2). 
=ERROR REPORT==== 
Error in process <0.30.0> with exit value: 
{{nocatch,{badarg,"N must be at least 3."}},
[{m,compute_value,1},{shell,exprs,6},
{shell,eval_loop,3}]} 

}  Can catch the exception instead: 
1> catch m:compute_value(12). 
3.00000 
2> catch m:compute_value(2). 
{badarg,"N must be at least 3."} 



}  Can use catch with conditionals to figure out 
what happened 
do_stuff(N, Pid) -> 
    Value = catch m:compute_value(N), 
    case Value of 
        {badarg, _ErrMsg} -> 
            ...  % handle the error 
        _Else -> 
            Pid ! {result,Value} 
    end. 
◦  Of course, could also use if expression… 



}  Three classes of exceptions: 
◦  throw – a process called throw() BIF 
◦  error – a runtime error occurred (e.g. badmatch) 
◦  exit – a process fired an exit signal 

}  Exception’s class dictates what catch returns 
◦  For throw(Expr), catch will return Expr 
◦  For error (runtime error), catch returns: 
�  {'EXIT', {Reason, erlang:get_stacktrace()}} 
◦  For exit (process exit signal), catch returns: 
�  {'EXIT', Reason} 



}  More advanced exception handling statement 
try 
    Expr1, Expr2, ... 
catch 
    Pattern1 -> Body1; 
    Pattern2 -> Body2; 
    ... 
end 

}  If no exceptions, evaluates to result of the last 
expression in the try block 

}  If an exception occurs in the try expressions: 
◦  First matching catch pattern is evaluated; try-block 

evaluates to result of corresponding catch-body 
◦  If no catch pattern matches then exception from try 

clause propagates out of entire try/catch statement 



}  Additional exception-matching capabilities: 
try 
    Expr1, Expr2, ... 
catch 
    [Class1:]Pattern1 [when Seq1] -> Body1; 
    [Class2:]Pattern2 [when Seq2] -> Body2; 
    ... 
end 

}  Can optionally specify exception class in 
catch patterns 
◦  Either throw, error, or exit 

}  Can also specify guard sequences, as usual 



}  Additional try-expression matching features: 
try Expr of 
    Pattern1 [when Seq1] -> Body1; 
    Pattern2 [when Seq2] -> Body2; 
    ... 
catch 
    [Class1:]Pattern1 [when Seq1] -> Body1; 
    [Class2:]Pattern2 [when Seq2] -> Body2; 
    ... 
end 

}  Identical to case statement, but also includes 
exception handling 



}  Additional try-expression matching features: 
try Expr of 
    Pattern1 [when Seq1] -> Body1; 
    Pattern2 [when Seq2] -> Body2; 
    ... 
catch 
    [Class1:]Pattern1 [when Seq1] -> Body1; 
    [Class2:]Pattern2 [when Seq2] -> Body2; 
    ... 
end 

}  If no try clause matches, try_clause error is thrown 
◦  Note:  Can’t catch this error with a catch clause! 

}  try only catches exceptions thrown by the try–exprs 
◦  If catch clause throws, propagates out of entire statement 



}  Can specify final processing after normal or 
abnormal completion: 
try ... 
catch ... 
after 
    Body 
end 
◦  Very useful for cleaning up resources, regardless of 

whether exception was thrown 
}  of, catch, and after clauses are all optional 
◦  Must have either a catch or an after clause 



}  New features for your RSS aggregator! 
◦  Retrieve RSS feeds from actual web servers 
◦  Aggregate multiple feeds into a single queue 

}  RSS queues have two modes of operation: 
◦  Get feed items from a URL 
◦  Get feed items from other RSS queues 

}  First mode requires talking to the Interwebs 
}  Can use Erlang http module to retrieve URLs 
◦  May fail with various errors, so we need error 

reporting and handling! 



}  A simple function:  http:request(Url) 
}  On success, {ok, Result} is returned 
◦  Result is a composite value containing HTTP status 

code, response headers, and response body 
◦  See docs for details of result! 

}  Some failures cause {error, Reason} to be 
thrown 

}  Not all ok results are acceptable! 
◦  e.g. may get an ok result, with a 404 status code! 
◦  In these cases, need to report the issue using an 

exception or an exit signal 



}  Will have a number of processes running… 
◦  Need to know what they are actually doing! 

}  Incorporate logging into your code this week 
}  Erlang provides an error_logger module 
◦  Provides an error-logging server process 
�  Registered under name error_logger 
◦  Also helper functions to report info messages, 

warnings, and errors 
�  Very similar to io:format/2 capabilities 
�  These funcs send messages to error_logger process 

}  I will give you some helpful logging macros 



}  Quite possibly the coolest feature of Erlang 
}  The ability to create generic servers 
◦  Abstract out all of the server-specific details 
�  e.g. what messages to handle, how to handle them 
◦  Provide a generic server behavior, and then plug in 

specific implementation details 
}  Gets to the core ideas behind the OTP 
◦  Facilitates very powerful and extensible systems 
◦  Very cool stuff!!! 


