CS11 Intro C++

Spring 2018 — Lecture 7



Copying Objects Redux

* Last time we introduced dynamic memory management, and the
need for custom copy-constructor, copy-assignment, etc.
* The Rule Of Three: If your class defines any of the following:

* A destructor
* A copy-constructor
* A copy-assignment operator

* |t probably needs to define all three.



Array of Floats and Rule of Three

* A class to manage an array of floats:

class FloatArray {
int count;
float *elems;

public:
FloatArray (int n);
// Copy-constructor
FloatArray (const FloatArray &f);

~FloatArray () ;

// Copy-assignment operator
FloatArray & operator=(const FloatArray &f);



Using the Array of Floats

e A function to filter out floats above a certain value
FloatArray filterAbove (const FloatArray é&input,

float wvalue) {
FloatArray result;

for (int i = 0; i < input.size(); i++) {
if (input.getValue (i) <= wvalue)
result.addValue (input.getValue(i)) ;
}

return result;

}

FloatArray data =

FloatArray filtered = filterAbove (data, 10.0);
* How many copies are made?



Using the Array of Floats (2)

e A function to filter out floats above a certain value

FloatArray filterAbove (const FloatArray é&input,
float wvalue) {

FloatArray result;
for (int 1 = 0; i < input.size(); i++) {
if (input.getValue (i) <= wvalue)
result.addValue (input.getValue(i)) ;

}

return result;

}
FloatArray data = ... ;
FloatArray filtered = filterAbove (data, 10.0);

* Conceptually: the £filterAbove () call evaluates to a temporary
FloatArray object, which is then passed to the FloatArray
copy-constructor to initialize filtered

* The temporary object will then be destructed after copying



Using the Array of Floats (3)

e A function to filter out floats above a certain value

FloatArray filterAbove (const FloatArray é&input,
float wvalue) {

FloatArray result;
for (int 1 = 0; i < input.size(); i++) {
if (input.getValue (i) <= wvalue)
result.addValue (input.getValue(i)) ;

}

return result;

}

FloatArray data = ... ;
FloatArray filtered = filterAbove (data, 10.0);

* What often happens: C++11 requires compilers to perform copy-
elision; i.e. eliminate copy-constructor invocations where possible

* Good compilers will likely construct result directly into £iltered



Using the Array of Floats (4)

e Our code:
FloatArray data = ... ;
FloatArray filtered = filterAbove (data, 10.0);

e filteredis an lvalue
* It can appear on the left-hand side of an assignment
* It persists across multiple statements

* The object returned by £ilterAbove () is an rvalue

* It is a temporary object that will be destructed at the end of statement
execution

* Since the filterAbove () call evaluates to a temporary object
that will be destructed at the end of the call, why not simply move its
contents into the new object being initialized?

 C++11 and later support this with move-construction and move-assignment



Move Construction

e Qur code:

FloatArray data = ... ;
FloatArray filtered = filterAbove (data, 10.0);

* To support move-construction from an rvalue, implement this
constructor:
FloatArray (FloatArray &&f)

* The type FloatArray &&is called an rvalue reference

e Can be used to manipulate a temporary object produced by evaluating an
expression
* Is usually not const, since the rvalue is usually mutated by the constructor



Move Construction (2)

* FloatArray move-constructor, take 1:
FloatArray (FloatArray &&f) ({
size = f.size;
elems = f.elems;

}
e Are we done?

* No: when temporary object f goes out of scope, it is destructed
* Its destructor will free the memory pointed to by elems...

* Need to also set f.elems = nullptr
* One example of why the argument cannot be const



Move Construction (3)

* Corrected FloatArray move-constructor:
FloatArray (FloatArray &&f) ({
size = f.size;
elems = f.elems;
f.elems = nullptr;

}

» Takes care of move-construction scenarios:

FloatArray data = ... ;
FloatArray filtered = filterAbove (data, 10.0);

* Also need to handle move-assignment scenarios:
FloatArray data = ... ;
FloatArray filtered;

filtered = filterAbove(data, 10.0);



Move Assignment

* FloatArray move-assignment operator, take 1:
FloatArray & FloatArray: :operator=(FloatArray &&f) {
size = f.size;
elems = f.elems;
f.elems = nullptr;
return *this;

}
e |s this correct?

* No: Need to free any memory the LHS FloatArray is using



Move Assignment (2)

* FloatArray move-assignment operator, take 2:
FloatArray & FloatArray: :operator=(FloatArray &&f) {

size = f.size;
delete[] elems;
elems = f.elems;

f.elems = nullptr;
return *this;

}
e |s this correct?

* No: Really should handle self-assignment in this case as well

* Extremely unlikely to occur by accident, but naughty programmers can force
it to occur




Move Assignment (3)

e Correct FloatArray move-assignment operator:
FloatArray & FloatArray: :operator=(FloatArray &&f) {
if (this == &f)
return *this; // Handle self-assignment

size = f.size;
delete[] elems;
elems = f.elems;
f.elems = nullptr;
return *this;



C++ Copy and Move Operators

* Copy operators (construction / assighment) are about correctness
* E.g. perform a deep copy when default shallow-copy behavior is wrong)

* Move operators are about performance

* When copy-elision is not possible, move contents of a temporary rvalue into
an lvalue

* C++ compiler will only generate move operators for your class if:
* Your class has no user-declared copy constructor
* Your class has no user-declared copy-assignment operator
* Your class has no user-declared destructor

* If your C++ class has any of these things, the compiler plays it safe:
in all likelihood, the default behavior would be incorrect



The Rule of Five

* The Rule Of Three: If your class defines any of the following:
* A destructor
* A copy-constructor
A copy-assignment operator

* [t probably needs to define all three.

* C++ won’t generate move operators if you have any of the above...

* The Rule of Five: If your class defines any of the following:
A destructor, a copy-constructor, a copy-assignment operator
e A move-constructor, a move-assignment operator

e ...and move semantics are desirable for your class, you probably need
to define all five.



Member Initializer Lists

* Class constructors can specify initialization of data-members using

member initializer lists
* A more succinct mechanism for specifying initial values in constructors

e Example: FloatArray constructors
// Can specify only a subset of the data members

FloatArray(int n) : count{n} ({

elems = new float[n]; \\\\\\\\\
for (int i = 0; i < n; i+4) Can optionally specify initialization

of data-members here

elems[i] = 0;

}

// Move-constructor becomes very short!
FloatArray (FloatArray &&f) : count{f.count}, elems{f.elems} ({

f.elems = nullptr;



Delegating Constructors

* Can use member initializer lists to reuse constructor implementations
class Point {
double x coord, y coord;
public:
Point (double x, double y) : x{x coord}, y{y coord} { }
Point () : Point{0, 0} { }

};
* Point () delegates to Point (x, y)
* Note: Must specify a constructor body, even if it’s empty

* In these cases, can only specify a target constructor in the member
initializer list

* Not allowed to specify any other member initializers



This Week’s Assignment

* This week’s assignment is to complete your integer Matrix class
* Add support for move-construction and move-assignment

» Add support for simple arithmetic operators (+, -, *) and compound
assignment operators (+=, -=, *=)

* If matrices been added/subtracted/multiplied don’t have compatible
dimensions, throw an exception

* Note: Multiplying matrices may result in a new matrix of different
dimensions. [R, S] * [S, T] = [R, T]

» *= gperator may change the dimensions of the LHS matrix

* A test suite will be provided, as usual



