
CS11 Intro C++
Spring 2018 – Lecture 6



Copying Objects

• Last time, introduced a Complex class
class Complex {

double re, im;
public:

Complex(double re, double im);
...

};

• What if we want to make a copy of a specific object?  i.e. initialize a 
Complex from another Complex
Complex c1{5, 2};
Complex c2{c1};  // Makes a copy!

• C++ automatically generates a copy constructor for every class



Copying Objects (2)

• The copy constructor is used when objects are passed by-value
double magnitude(Complex c);
• c is passed by value
• A copy of c is made, and magnitude operates on the copy
• The copy constructor is used
• (This is why we want to pass objects by const-reference; to avoid the 

overhead of unnecessary copying)

• The default copy constructor generated by C++ simply copies the 
values of all members into the new object
• Sometimes this causes problems…

• To write our own version of the copy constructor, implement this 
constructor:
Complex(const Complex &c); // Must pass by reference



Assigning Objects

• Similarly, can use assignment on objects without any extra code
Complex c1{5, 2};
Complex c2;
...
c2 = c1;

• This is called the copy-assignment operator
• The default copy-assignment operator generated by C++ simply 

copies the values of all members from the RHS into the LHS
• To write our own version of the copy-assignment operator, 

implement this member operator-overload function:
Complex & Complex::operator=(const Complex &c);
• Must return a non-const reference to the LHS of the assignment, in order to 

support operator-chaining, e.g. c3 = c2 = c1;



Allocating an Object on the Heap

• When you need a large chunk of memory, or you need to create 
objects that live beyond the lifetime of a specific function call, you 
can allocate memory from the heap
Complex *p = new Complex{3, 5};
• p points to a Complex object allocated on the heap

• To access members of the object pointed to by p, must use -> 
operator
cout << p.real() << ", " << p.imag(); // ERROR
cout << p->real() << ", " << p->imag(); // OK!

• If your program allocates memory from the heap, your program must 
also take care to release it!  Otherwise you will have a memory leak.
delete p;
• p will still contain an address; don’t use it after deleting the object!



Heap-Allocating Arrays of Objects

• Can also allocate arrays of objects on the heap
Complex *p = new Complex[1000];
• p points to an array of 1000 Complex objects, allocated on the heap

• Each element is initialized with the class’ default constructor
• Not possible to call a different constructor during array initialization
• If your element type doesn’t have default initialization, not possible to use in 

array allocations
• Can access array elements as usual, e.g.  p[0].real()
• Each element is a Complex object, so use . instead -> for member access

• Freeing arrays is slightly more complicated:
delete[] p;
• NOTE:  Must use delete[] with new[], and delete with new!  Do not mix!!!
• The compiler will not stop you from mixing the two. The types do not 

indicate whether the allocation is an array or a single object.



Heap-Allocating Arrays of Primitives

• Can also allocate arrays of primitive values
double *array = new double[numValues];

• Primitive types do not have constructors or destructors.  The values 
are uninitialized.
• If there are random values in the memory area used for the allocation, the 

new array may contain garbage
• This doesn’t always happen, but it will eventually!

• Always initialize arrays of primitive values after allocating
for (int i = 0; i < numValues; i++)

array[i] = 0;

• When finished, free with delete[] as usual
delete[] array;



Managing Heap-Allocated Memory

• Managing heap-allocated memory in C++ programs is difficult and 
bug-prone, particularly as program size grows
• Simple solution:  Don’t heap-allocate memory at all!  J
• When possible, use std::vector<T>, std::array<T>, std::string, etc.

• When you must heap-allocate memory, use the C++ class lifecycle to 
make memory management easier
• When an object goes out of scope, its destructor is called 

automatically…
• Strategy:
• Heap-allocate memory in class constructor (and in a very few other places)
• Free memory in destructor
• The object manages memory for you – abstraction / encapsulation

• Pattern is called Resource Acquisition Is Initialization (RAII)



Array of Floats

• A class to manage an array of floats:
class FloatArray {

int count;
float *elems;

public:
FloatArray(int n);
~FloatArray();
...

};



Array of Floats (2)

• Constructor:
FloatArray::FloatArray(int n) {

count = n;
elems = new float[count];
for (int i = 0; i < count; i++)

elems[i] = 0;
};

• Destructor:
FloatArray::~FloatArray() {

delete[] elems;
};



Array of Floats (3)

• FloatArray takes care of memory management, so we don’t have to!
float getAverage() {

int numFloats;
cin >> numFloats;
FloatArray f{numFloats};
for (int i = 0; i < numFloats; i++) {

float value;
cin >> value;
f.set(i, value);

}
return f.average();

};
• When f goes out of scope, its destructor is called automatically
• Heap memory allocated within f is freed automatically

f goes out of scope here



Copying Arrays of Floats

• What does this code do?
void f(int n) {

FloatArray fa1{n};
... // populate fa1

FloatArray fa2{fa1};  // Make a copy!
...

}

• Recall:
• The default copy constructor

generated by C++ simply copies
the values of all members into
the new object

• Hmmmm….

count:  n
elems:

fa1

heap-allocated 
array of floats

count:  n
elems:

fa2



Copying Arrays of Floats (2)

• What does this code do?
void f(int n) {

FloatArray fa1{n};
... // populate fa1

FloatArray fa2{fa1};  // Make a copy!
...

}
• The default copy-constructor

performs a shallow copy
• This code has several issues
• Changes through fa1 will be visible

through fa2, and vice versa
• The code will likely crash with a

double-free of the memory block

count:  n
elems:

fa1

heap-allocated 
array of floats

count:  n
elems:

fa2



Custom Copy Constructors

• If your class dynamically allocates memory, you usually need to 
implement a custom copy-constructor that performs a deep copy
• The object being initialized needs its own memory region!

• Updated code for FloatArray:
FloatArray::FloatArray(const FloatArray &f) {

count = f.count;
// Make a deep copy
elems = new float[count];
for (int i = 0; i < count; i++)

elems[i] = f.elems[i];
}

• Note:  Can directly access private members of f because we are still in 
the FloatArray code
• Makes the implementation short and clean



Assigning Arrays of Floats

• What does this code do?
void f(int n) {

FloatArray fa1{n};
... // populate fa1

FloatArray fa2{10};
...
fa2 = fa1;

}

• This doesn’t invoke the copy-constructor, because it isn’t part of a 
variable-initialization statement
• Rather, it invokes the copy-assignment operator

FloatArray & FloatArray::operator=(const FloatArray &f)



Assigning Arrays of Floats (2)

• What does this code do?
void f(int n) {

FloatArray fa1{n};
... // populate fa1

FloatArray fa2{10};
...
fa2 = fa1;

}

• C++ also generates a default copy-assignment operator for you
• The default copy-assignment operator generated by C++ simply 

copies the values of all members from the RHS into the LHS
• We have the same problems as before, but we also leak memory!

count:  n
elems:

fa1

heap-allocated 
array of floats

count:  n
elems:

fa2

heap-allocated 
array of floatsX



Custom Copy-Assignment Operators

• Previous observation:
• If your class dynamically allocates memory, you usually need to implement a 

custom copy-constructor that performs a deep copy
• The object being initialized needs its own memory region

• Similarly:
• If your class dynamically allocates memory, you usually need to implement a 

custom copy-assignment operator that cleans up any existing allocation, and 
also performs a deep copy
• The object being assigned to may already hold some memory, which needs 

to be freed
• The object being assigned to needs its own memory region



The Rule of Three

• The Rule Of Three:  If your class defines any of the following:
• A destructor
• A copy-constructor
• A copy-assignment operator

• It probably needs to define all three.
• (There is also a Rule of Five – we will discuss in a future lecture)

• Aside:  We would avoid needing to do this if we simply used a 
std::vector<T> or std::array<T> !
• These classes already manage heap-allocated memory properly for us

• Gives rise to our favorite rule:  The Rule of Zero
• Write classes in such a way that you can rely on the default behavior of 

operations like the destructor, copy-constructor, copy-assignment, etc.



Custom Copy-Assignment Operator

• Copy-assignment operator must follow specific rules
• Make sure to release any dynamically-allocated resources, then allocate new 

resources to receive the values from the RHS (i.e. do a deep copy)
• Return a non-const reference to the LHS of the assignment

• Example FloatArray implementation, take 1:
FloatArray & FloatArray::operator=(const FloatArray &f) {

delete[] elems;            // Release old memory
count = f.count;
elems = new float[count];  // Allocate new memory
for (int i = 0; i < count; i++)

elems[i] = f.elems[i];

// Return non-const reference to myself
return *this;

}



Custom Copy-Assignment Operator (2)

• Example FloatArray implementation, take 1:
FloatArray & FloatArray::operator=(const FloatArray &f) {

delete[] elems;            // Release old memory
count = f.count;
elems = new float[count];  // Allocate new memory
for (int i = 0; i < count; i++)

elems[i] = f.elems[i];
return *this;

}

• What happens if we write this code?
FloatArray f{1000};
... // Populate f

f = f;

f is both LHS and RHS of the 
assignment.  First step is to 
delete the internal array of 
data…  L



Custom Copy-Assignment Operator (3)

• Copy-assignment operator must follow specific rules
• Make sure to release any dynamically-allocated resources, then allocate new 

resources to receive the values from the RHS (i.e. do a deep copy)
• Return a non-const reference to the LHS of the assignment
• Properly identify and handle self-assignment!

• An easy way to detect self-assignment:  compare the address of the 
LHS and RHS of the assignment
• If they are the same address, can safely assume it’s self-assignment



Custom Copy-Assignment Operator (4)

• A correct FloatArray implementation of copy-assignment:
FloatArray & FloatArray::operator=(const FloatArray &f) {

// Detect and handle self-assignment
if (this == &f)

return *this;

delete[] elems;            // Release old memory
count = f.count;
elems = new float[count];  // Allocate new memory
for (int i = 0; i < count; i++)

elems[i] = f.elems[i];

// Return non-const reference to myself
return *this;

}



The bool Type and Comparisons

• C++ has a bool type to use for representing Boolean values
• Two values:  true and false

• If you write code that keeps track of flags, or returns true/false based 
on a condition, use the bool type, not int!
• Example:  Comparison operators

bool operator==(const MyClass &c1, const MyClass &c2) {
...

}

• Easiest to implement != in terms of ==
bool operator!=(const MyClass &c1, const MyClass &c2) {

return !(c1 == c2);
}
• Ensures that != is truly the inverse of ==



C++ Inline Functions

• In C++, can provide the definition of functions as part of the declaration
class Complex {

double re, im;
public:

...
double real() const {

return re;
}

double imag() const {
return im;

}
};

• These are called inline functions



C++ Inline Functions (2)

• Due to its object-oriented nature, C++ encourages a high level of 
encapsulation and modularity in code
• Make data-members private, and provide public member functions to access 

this state
• Problem:  Function-invocations aren’t free
• Must pass arguments, set up stack frame, jump to function code, jump back
• The approach of the language encourages a lot of extra function invocations

• Solution:  If a function is short and simple, the compiler can simply 
replace the function-invocation with the function’s body
• Example:

complex c = ...;
cout << c.real() << ", " << c.imag();
// Compiles into:  cout << c.re << ", " << c.im;



C++ Inline Functions (3)

• Any function you define (i.e. write code for) in a class declaration is a 
candidate to be inlined…
• The compiler will not blindly inline functions! It will evaluate 

whether it makes sense to do so, or not
• If a function is recursive, it usually won’t be inlined
• If a function is large and complex, and will cause significant bloat in the 

binary file, it usually won’t be inlined
• Inlining is primarily for short, simple functions

• asdf



C++ Inline Functions (4)

• Providing the definition of member-functions inline, inside of a class 
declaration, requires no additional syntax
• Example:  a file complex.h

class Complex {
double re, im;

public:
...
double real() const {

return re;
}

double imag() const {
return im;

}
};

• No need to define Complex::real() or Complex::imag() in the complex.cpp file 
if they are defined in the complex.h file



C++ Inline Functions (5)

• If you wish to define a top-level function (i.e. not a member-function 
in a class) in the header file, you must use the inline keyword
• Example:  still inside the file complex.h

inline bool operator==(const Complex& c1,
const Complex & c2) {

return c1.real() == c2.real() &&
c1.imag() == c2.imag();

}

• Without the inline keyword, you will likely encounter “multiple 
definition” errors at compilation and link time L



This Week’s Assignment

• This week’s assignment will be to implement a 2D integer Matrix
class whose dimensions can be specified to the constructor

• In C/C++, best approach to represent a 2D matrix/array is to map the 
2D (row, column) coordinates into a 1D array
• Numerous reasons for this, including performance, ease of maintenance, etc.

• Given a matrix of size rows x cols, how to map a given 2D (r, c) 
coordinate into the corresponding 1D cell?
• index = r * cols + c (row-major order)
• index = c * rows + r (column-major order)

• Row-major order means that column-values in the same row are 
physically adjacent to each other in memory

• C/C++ multidimensional arrays use row-major order
• A few other languages (e.g. Fortran, MATLAB, R) use column-major order



This Week’s Assignment (2)

• Because the Matrix class dynamically allocates memory, it needs a 
destructor, a copy-constructor, and a copy-assignment operator
• Follow the Rule of Three!

• As usual, write Doxygen-style comments, and write a Makefile

• Tests are provided!  J


