
CS11 Intro C++
Spring 2018 – Lecture 5

C++ Abstractions

• C++ provides rich capabilities for creating abstractions
class Complex {

double re, im;
public:

Complex(double re, double im);
...

};

• Would be nice if we could use arithmetic operators with our complex
number type
Complex c1{5, 2}, c2{-4, 4};
Complex c3 = c1 + c2;

• Would also be nice to use stream-output with our user-defined type
cout << c3;

C++ Operator Overloading

• C++ allows us to give additional meanings to the built-in operators
• Called operator overloading

• When you write:
Complex c1{5, 2}, c2{-4, 4};
Complex c3 = c1 + c2;
cout << c3;

• The compiler sees:
Complex c1{5, 2}, c2{-4, 4};
Complex c3 = operator+(c1, c2);
operator<<(cout, c3);

• By providing implementations of these operator functions, your user-
defined types can also be used with the corresponding operators

C++ Operator Overloading (2)

• There are actually two forms of operator overloads in C++
• Can implement non-member operator overloads, e.g.

Complex operator+(const Complex &lhs,
const Complex &rhs) {

return Complex{lhs.real() + rhs.real(),
lhs.imag() + rhs.imag()};

}

Complex c3 = operator+(c1, c2);

• Operator-overload is provided as a separate function that lives
outside any class declaration

C++ Operator Overloading (3)

• There are actually two forms of operator overloads in C++
• Can implement member operator overloads, e.g.

class Complex {
double re, im;

public:
...
Complex operator+(const Complex &rhs) const {

return Complex{re + rhs.re, im + rhs.im};
}

};

Complex c3 = c1.operator+(c2);

• Operator-overload is specified as a member function on the type
• The LHS of the operation is the object that the function is called on

C++ Operator Overloading (4)

• Which is better?
Complex c3 = operator+(c1, c2);
Complex c3 = c1.operator+(c2);

• The answer really depends on what your type needs to support.
• Example: want to support complex numbers + real numbers

Complex c4;
double v;

• A valid expression:
c4 = c3 + v; // Complex + double

• Could use either non-member overload or member overload, e.g.
Complex operator+(const Complex &c, double v);
Complex Complex::operator+(double v) const;

C++ Operator Overloading (5)

• Example: want to support complex numbers + real numbers
Complex c4;
double v;

• Also a valid expression:
c4 = v + c3; // double + Complex

• In this case, can only use a non-member operator overload!
Complex operator+(double v, const Complex &c);
Complex double::operator+(Complex v);

• double is a primitive, not a class, so a member operator-overload is
not allowed

• If you want to support multiple call-patterns, non-member operator
overload is usually the best bet.

C++ Operator Overloading (6)

• It may seem like a pain to implement all of these operations…
Complex operator+(const Complex &c, double v);
Complex operator+(double v, const Complex &c);

• Can often implement these operators in terms of each other!
Complex operator+(const Complex &c, double v) {

...
}

Complex operator+(double v, const Complex &c) {
return c + v; // Use other operator

}

• Can implement e.g. != in terms of ==, > in terms of <=, etc., etc.

Complex Constructors…

• Turns out there is an even easier way to support these in C++…
• What constructor call-patterns make sense for Complex type?
• Complex c1{3, 2};
• Initializes c1 to 3 + 2i

• Complex c2{4};
• Initializes c2 to 4 + 0i

• Complex c3;
• Initializes c3 to 0 + 0i

• Can implement three constructors:
Complex(double re, double im);
Complex(double re);
Complex();

Complex Constructors and Default Values

• Could implement three constructors…
Complex(double re, double im);
Complex(double re);
Complex();

• Can also specify default values for arguments
Complex(double re = 0, double im = 0);

• This one constructor supports all three initialization patterns!
Complex c1{3, 2}; // 3 + 2i
Complex c2{4}; // 4 + 0i
Complex c3; // 0 + 0i

• Specify default values for parameters in the function declaration
• All parameters with default values must be at the end of the

argument list

Constructors and Implicit Conversion

• In C++, single-argument constructors can also be used for implicit
conversions
• The compiler will perform the conversion automatically, if needed

• Example:
Complex(double re = 0, double im = 0);
• This constructor also supports a one-argument call pattern

• If you write:
Complex c1{5, 3};
Complex c2 = c1 + 4;
• Assume you only have provided one addition operation:
Complex operator+(const Complex &, const Complex &)

• The compiler will automatically convert 4 into a Complex object:
Complex c2 = operator+(c1, Complex{4});

Arithmetic and Assignment

• Can also do arithmetic and assignment in one step:
Complex c1{10, -5}, c2{3, 4};
c1 += c2; // now c1 = {13, -1}

• These generally should be implemented as member operator-
overloads
• The LHS of the operation is our user-defined type
• Can be implemented as a non-member operator overload, but it really

overcomplicates things!
• Implementation:

Complex & Complex::operator+=(const Complex &rhs) {
re += rhs.re;
im += rhs.im;
return *this;

}

Arithmetic and Assignment (2)

• Implementation:
Complex & Complex::operator+=(const Complex &rhs) {

re += rhs.re;
im += rhs.im;
return *this;

}

• The computation itself is straightforward…
• Assignment operations should always return a non-const reference

to the LHS of the assignment
• (Reason: because this is how this operator works with primitive types too…)
• Recall: this is a pointer to the object that the member-function is invoked

on
• *this dereferences (i.e. follows) the pointer to get to the object itself
• Conversion from object to object-reference happens automatically

Arithmetic and Assignment (3)

• Can actually implement + in terms of +=, etc.
Complex operator+(const Complex &lhs, const Complex &rhs) {

Complex result = lhs;
result += rhs;
return result;

}

• Or, if you want to be short and sweet:
Complex operator+(const Complex &lhs, const Complex &rhs) {

return Complex{lhs} += rhs;
}
• Makes a copy of the LHS value, uses += to add in the RHS value, then returns

the computed result

Implementing Stream-Output

• Supporting stream-output for your types is very straightforward
Complex c3 = c1 + c2;
cout << c3 << "\n";

• Implement this function for your type:
ostream & operator<<(ostream &os, const Complex &c)
• A non-member operator overload

• This must be a non-member operator overload:
• ostream is a C++ standard-library class, built into the language
• You can’t change its definition to provide a member overload J

• Your implementation should:
• Output your type’s value in some clean, simple way
• Recommendation: do not output any newlines in your implementation!
• Return the ostream-reference as the function’s return-value

Implementing Stream-Output (2)

• Example:
ostream & operator<<(ostream &os, const Complex &c) {

os << "(" << c.real() << "," << c.imag() << ")";
return os;

}
• Note: use stream-output operations to output your object’s components!

• Returning the passed-in ostream-reference allows us to support
operator chaining
Complex c3 = ...;
cout << "Answer is: " << c3 << "\n";

• Expression is evaluated from left to right
• Each operator<< call returns the output-stream, so that the next
operator<< call can use it for output

This Week’s Assignment

• This week’s assignment will be to implement a Rational class
• Represent numbers as numerator / denominator

• Provide a constructor with default arguments, so you can support
multiple initialization patterns

• Provide operator overloads to support arithmetic on Rational
values

• Provide stream-output operator so you can output Rational
values

