
CS11 Intro C++
Spring 2018 – Lecture 4

Build Automation

• When a program grows beyond a certain size, compiling gets
annoying…

g++ -std=c++14 -Wall units.cpp testbase.cpp \
hw3testunits.cpp -o hw3testunits

g++ -std=c++14 -Wall units.cpp convert.cpp -o convert
• Also, if only units.cpp changes, why recompile testbase.cpp /
hw3testunits.cpp / convert.cpp source files?

• Typical development process:
• Write or modify some code
• Compile
• Test
• Repeat until done…

• Automating this process saves lots of time and effort

2

make

• make is a standard tool for automating builds
• Command-line utility, very ubiquitous!
• Takes input files and produces output files, based on a “makefile”
• Several versions of make: GNU, BSD, …

• make is often used for C and C++ projects
• Sometimes other build tools are used for C/C++
• CMake is becoming increasingly popular
• Visual C++ provides nmake command-line build program
• Other languages typically have their own build tools

3

Makefiles

• make requires a makefile that describes how to build your program
• Typical filenames are Makefile (preferred) or makefile
• Can specify a nonstandard makefile name with:
make -f some-other-makefile

• The makefile describes build targets
• Files that need to be generated from other files

• Each target specifies its dependencies – the files needed to build the
target
• Can also specify how to build the target from its dependencies

4

Example Makefile

• Example Makefile:
convert : units.o convert.o

g++ -std=c++14 -Wall units.o convert.o \
-o convert

units.o : units.cpp units.h
g++ -std=c++14 -Wall -c units.cpp

... (more rules for other .o files)

clean :
rm -f convert hw3testunits *.o *~

• Lines are indented with tab characters – spaces won’t work!
• A line can be wrapped to next line by ending with \
• Can specify multiple commands in a rule, as long as rules are

separated by blank lines

5

Running make

• When make is run, it automatically looks for the makefile in the
current directory
• make will automatically try to build the first target specified in the

makefile

• Usually, the first target in the makefile is named all, and it builds
everything of interest

all : convert hw3testunits
• (this rule doesn’t need to specify any commands)

• Can optionally specify one or more build targets to make:
make clean convert

6

Real Build Targets

• From our example makefile:
units.o : units.cpp units.h

g++ -std=c++14 -Wall -c units.cpp

• In this case, units.o is a real file
• make will only build what is needed
• If a target file’s date is older than any dependency, make will rebuild that

target
• make will only rebuild the parts of the program that actually changed

• To force a file to be rebuilt, you can touch it
touch units.cpp
• Sets file’s modification-time to current system time
• Touching a nonexistent file will create a new empty file

7

Phony Build Targets

• From our example:

clean :
rm -f convert hw3testunits *.o *~

• In this case, clean is not a real file

• What if there happened to be a file named clean ?

• Our rule wouldn’t run!

• make would see the “build-target” file, with no dependencies, and assume

that nothing needed to be done

• Use .PHONY to say that the clean target isn’t a real file

.PHONY: clean
• Now if a file named clean exists, make ignores it

• (The all target should also be marked as phony…)

8

Chains of Build Rules

• make figures out the graph of dependencies
convert : units.o convert.o

g++ -std=c++14 -Wall units.o convert.o \
-o convert

• If any of convert’s dependencies don’t exist, make will use their
build rules to make them

units.o : units.cpp units.h
g++ -std=c++14 -Wall -c units.cpp

• make will give up if:
• A dependency can’t be found, and there’s no build rule that shows how to

make it
• It finds a cycle in the graph of dependencies

9

Makefile Variables

• Makefiles can define variables
CONVERT_OBJS = units.o convert.o

• Can use variables in build rules
convert : $(CONVERT_OBJS)

g++ $(CONVERT_OBJS) -o convert

• $(var-name) tells make to expand the variable
• Use variables to avoid listing the same things over and over again, all over

the place
• Same reasons as code reuse: state things once, so we only have to change

things in one place

• Makefile variable names are usually ALL_CAPS

10

Implicit Build Rules

• make already knows how to build certain targets
• Those targets have built-in rules for building them
• These built-in rules are called implicit build rules

• Example:
• A makefile has units.o as a dependency, but no corresponding build rule
• If units.c exists, make uses gcc to generate units.o
• If units.cpp exists, make uses g++ to generate units.o

• make has quite a few built-in implicit build rules!
• Read make documentation for more details

11

Using Implicit Build Rules

• Implicit build rules make your makefiles much shorter
CONVERT_OBJS = units.o convert.o

all : convert hw3testunits

convert : $(CONVERT_OBJS)
g++ -std=c++14 -Wall $(CONVERT_OBJS) \

-o convert

clean :
rm -f convert hw3testunits *.o *~

.PHONY: all clean

• Can leave out the rules for all the object files!

12

Definitions of Implicit Rules

• Example definitions of implicit build rules:
C compilation implicit rule
%.o : %.c

$(CC) -c $(CPPFLAGS) $(CFLAGS) $< -o $@

C++ compilation implicit rule
%.o : %.cpp

$(CXX) -c $(CPPFLAGS) $(CXXFLAGS) $< -o $@

• Variables are used for compiler and options!
• CC is the C compiler to use, CXX is the C++ compiler to use
• CFLAGS are C compiler options, CXXFLAGS are C++ compiler options
• CPPFLAGS are the preprocessor flags
• Default values are for gcc and g++

13

Leveraging Variables in Implicit Rules

• We want to use the implicit-rule variables in our makefiles! J
• Example: specify -Wall and -std=c++14 for compilation

CXXFLAGS = -Wall -std=c++14
CONVERT_OBJS = units.o convert.o

all : convert hw3testunits

convert : $(CONVERT_OBJS)
$(CXX) $(CXXFLAGS) $(CONVERT_OBJS) \

-o convert $(LDFLAGS)

clean :
rm -f convert hw3testunits *.o *~

.PHONY : all clean

14

Definitions of Implicit Rules (2)

• Examples of implicit build rules:
C++ compilation implicit rule
%.o : %.cpp

$(CXX) -c $(CPPFLAGS) $(CXXFLAGS) $< -o $@

• Special syntax for pattern-matching
• % matches the filename
• $< is the first prerequisite in the dependency list
• $@ is the filename of the target

• These $... values are called automatic variables
• Other automatic variables too!
• e.g. $^ is list of all prerequisites in the dependency list

15

Using Automatic Variables

• Can use automatic variables to link our program
CXXFLAGS = -Wall -std=c++14
CONVERT_OBJS = units.o convert.o

all : convert hw3testunits

convert : $(CONVERT_OBJS)
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)

clean :
rm -f convert hw3testunits *.o *~

.PHONY : all clean

16

make Reference

• For more details, see the GNU make manual
• http://www.gnu.org/software/make/manual/

17

http://www.gnu.org/software/make/manual/

Automatic Document Generation

• Automating API-doc generation is a very powerful technique
• Comment your code according to a specified style
• Run a documentation-generator on your code
• Produces API documentation of your code, in HTML, PDF, etc. formats, ready

for distribution!

• The documentation is in one place – your source
• Tools can use the code as well as your comments in the generated output

• Several different options for doc-generation
• We will use doxygen: http://www.doxygen.org

18

http://www.doxygen.org/

Doxygen Configuration

• Doxygen is driven by a config file
• It will generate a template file for you:

doxygen -g [filename]
• Default filename is Doxyfile

• Customize the config file for your project
• Set different configuration parameters as needed
• Parameters are well documented in the config file

• Parameter names are ALL_CAPS
• (just like makefile variables)
• Parameter-value can extend to next line, if current line ends with \

(backslash) character
• Switches are specified with YES or NO

19

Doxygen Config Tips

• You should set:
• INPUT (input files/directories)
• OUTPUT_DIRECTORY (where results go)
• PROJECT_NAME

• Other good settings to use:
• JAVADOC_AUTOBRIEF = YES
• EXTRACT_ALL = YES
• EXTRACT_PRIVATE = YES
• EXTRACT_STATIC = YES

20

Commenting Your Code

• Several different formats are recognized
/**
* This is a comment for my class. It is spiffy.
*/

class MyClass { ... };
• /** starts the comment (javadoc style)
• Can also start with /*! (Qt style)
• Also several other options (see doxygen manual)

• Classes, types, functions have a brief comment, and a detailed
comment
• If JAVADOC_AUTOBRIEF is defined in doxygen config, first sentence is used

as brief comment.
• Otherwise, must use \brief keyword in your comments

21

Structural Commands

• “Structural commands” specify what a comment is associated with
• “This is a comment for the source file.”
• “This is a comment for class C.”
• “This is a comment for parameter x of the function.”
• etc.

• Allows Doxygen comments to be separated from entities that are
being commented. (Not always recommended…)
• Two different formats for structural commands
• Doxygen format: \cmd
• Javadoc format: @cmd
• Can use either format, but be consistent! J

22

What Can Be Commented?

• Files can be given comments
• Must do this for doxygen to pick up certain comments
• Examples:

/*! \file ... */ (Qt/Doxygen format)
/** @file ... */ (Javadoc format)

• Any type can be given a doxygen comment
• Classes, structs, enums, typedefs, unions, namespaces

• Comment should immediately precede the type
• …unless you are using structural commands

• Preprocessor definitions can also be commented!
• #define symbols, macros

23

Commenting Variables and Functions

• Global/static variables, and member variables
• Comments can precede the variable:

/** My special widget. */
SpecialWidget sw;

• Or they can follow the variable, on the same line:
SpecialWidget sw; /**< My special widget. */

• (Note the < character)

• Functions and their parameters/return values
• Parameters follow this pattern:

@param name Description
\param name Description

• Return value is documented with \return or @return

24

Running Doxygen

• Doxygen is simple to run:
doxygen [filename]
• doxygen uses Doxyfile if no config file is given
• Basically no command-line arguments; config file contains all the details!

• Results are stored in output directory
• Each format gets its own subdirectory
• html for HTML output, latex for LaTeX, etc.
• Can specify alternate output directories if desired.

25

Doxygen References

• For more details, see the doxygen manual
• http://www.stack.nl/~dimitri/doxygen/manual.html
• http://www.doxygen.org

26

http://www.stack.nl/~dimitri/doxygen/manual.html
http://www.doxygen.org/

This Week’s Homework

• Write a Makefile for your project
• Build convert and hw3testunits from their sources
• Create an all target and a clean target
• Create a test target that runs hw3testunits
• Make sure that everything works properly

• Update your documentation to use Doxygen style comments
• Create a Doxyfile configuration file
• Add a docs build rule that generates HTML documentation

27

