
CS11 Intro C++
Spring 2018 – Lecture 3

C++ File I/O

• We have already seen C++ stream I/O
#include <iostream>
cout << "What is your name? ";
cin >> name;
cout << "Hello " << name << "!\n";
• Supports primitive types and some C++ classes (e.g. std::string)

• C++ also includes support for reading and writing files
• Uses the exact same stream I/O mechanism
• Simply uses another kind of stream object to read and write
• #include <fstream>

• Provides these classes:
• ifstream for reading from files
• ofstream for writing to files
• fstream for reading and writing to files

C++ File I/O (2)

• Usage is very straightforward:

vector<double> read_data(string filename) {
ifstream ifs{filename};
vector<double> data;

// Make sure the file was opened successfully
if (!ifs.is_open())

throw illegal_argument("Couldn't open file");

// Read data until we hit EOF
while (ifs.good()) {

double v;
ifs >> v;
data.push_back(v);

}
return data;

}

C++ File I/O (3)

• File streams (and all streams) can be used in conditional expressions
• They will indicate their current status – true for “everything is good!”, or false for

“something went wrong!”
vector<double> read_data(string filename) {

ifstream ifs{filename};
vector<double> data;

// Make sure the file was opened successfully
if (!ifs)

throw illegal_argument("Couldn't open file");

// Read data until we hit EOF
while (ifs) {

double v;
ifs >> v;
data.push_back(v);

}
return data;

}

C++ File I/O (4)

• Note: We don’t close the file anywhere in this function!
• The ifstream destructor will automatically close the file, when the ifs object

goes out of scope
vector<double> read_data(string filename) {

ifstream ifs{filename};
vector<double> data;

// Make sure the file was opened successfully
if (!ifs)

throw illegal_argument("Couldn't open file");

// Read data until we hit EOF
while (ifs) {

double v;
ifs >> v;
data.push_back(v);

}
return data;

}

Variable Scope

• A variable’s scope is the part of the program where the variable is accessible
• Starts at the variable’s declaration; extends to the end of the most immediately

enclosing block
vector<double> read_data(string filename) {

ifstream ifs{filename};
vector<double> data;

// Make sure the file was opened successfully
if (!ifs)

throw illegal_argument("Couldn't open file");

// Read data until we hit EOF
while (ifs) {

double v;
ifs >> v;
data.push_back(v);

}
return data;

}

scope
of v

scope of
data

scope
of ifs

scope of
filename

Variable Scope (2)

• Generally want a variable’s scope to be as small as possible
• Declare variables when and where you actually need them
• Helps to reduce chances of weird bugs, name conflicts, etc.
vector<double> read_data(string filename) {

ifstream ifs{filename};
vector<double> data;

// Make sure the file was opened successfully
if (!ifs)

throw illegal_argument("Couldn't open file");

// Read data until we hit EOF
while (ifs) {

double v;
ifs >> v;
data.push_back(v);

}
return data;

}

Variable Scope (3)

• When an object variable goes out of scope, its destructor is called
automatically – can perform any necessary cleanup tasks
• e.g. ifstream destructor closes the underlying file when ifs goes out of scope
vector<double> read_data(string filename) {

ifstream ifs{filename};
vector<double> data;

// Make sure the file was opened successfully
if (!ifs)

throw illegal_argument("Couldn't open file");

// Read data until we hit EOF
while (ifs) {

double v;
ifs >> v;
data.push_back(v);

}
return data;

}

Variable Scope (4)

• Primitive types don’t have a destructor
• e.g. int, double, float, long, pointer types
• When v goes out of scope, its space is reclaimed, but nothing else happens
vector<double> read_data(string filename) {

ifstream ifs{filename};
vector<double> data;

// Make sure the file was opened successfully
if (!ifs)

throw illegal_argument("Couldn't open file");

// Read data until we hit EOF
while (ifs) {

double v;
ifs >> v;
data.push_back(v);

}
return data;

}

C++ File I/O (5)

• If we wanted to close the ifstream before it goes out of scope, can
use the close() member-function

• We will cover more details of file I/O in the future…
• Fortunately, basic usage is very straightforward, and uses our existing

stream-I/O knowledge!

C++ Function Arguments

• In C++, arguments are passed by value as a default
• The function receives a copy of the arguments, rather than the original

• Example:
double compute_distance(Point a, Point b) {

double dx = b.get_x() - a.get_x();
double dy = b.get_y() - a.get_y();
return sqrt(dx * dx + dy * dy);

}

Point p1{3, 5};
Point p2{8, 6};
cout << compute_distance(p1, p2);

• compute_distance() receives a copy of p1 and p2, rather than
the original variables p1 and p2 themselves

C++ Function Arguments (2)

• Passing large objects by value can get very expensive…
double compute_average(vector<double> values) {

double sum = 0;
for (double v : values)

sum += v;
return sum / (double) values.size();

}

• If our collection holds 10 million values, copying the data will be very
slow…

• C++ also supports passing arguments by reference, when pass-by-
value is undesirable
• No copy is made!
• Rather, the function operates on the exact object passed in by the caller

C++ Function Arguments (3)

• Updated function, passing the vector by reference:
double compute_average(vector<double> &values) {

double sum = 0;
for (double v : values)

sum += v;
return sum / (double) values.size();

}
• Now our function receives a reference to the caller’s vector object, rather

than a copy of the vector

• References have the exact same syntax as objects
• The only change we have made to our function was to pass by reference,

rather than pass by value

C++ Function Arguments (4)

• Updated function, passing the vector by reference:
double compute_average(vector<double> &values) {

double sum = 0;
for (double v : values)

sum += v;
return sum / (double) values.size();

}

vector<double> input_data;
... // Load input data
cout << compute_average(input_data);

• Don’t need to explicitly convert an object into a reference before
invoking the function – it happens automatically

C++ Function Arguments (5)

• Passing an object by-reference allows a function to change the
caller’s object
• Sometimes this is desirable, e.g.

void load_input_data(vector<double> &values,
string filename) {

ifstream ifs(filename);
while (ifs) {

double v;
ifs >> v;
values.push_back(v);

}
}

vector<double> input_data;
load_input_data(input_data, "data.txt");
cout << compute_average(input_data);

C++ Function Arguments (6)

• We definitely don’t want compute_average() to mutate its
argument!
double compute_average(vector<double> &values) {

double sum = 0;
for (double v : values)

sum += v;
return sum / (double) values.size();

}

vector<double> input_data;
load_input_data(input_data, "data.txt");
cout << compute_average(input_data);

• Can specify that argument’s value cannot change by using the const
modifier:
double compute_average(const vector<double> &values) {

C++ Function Arguments (7)

• When using const, a function’s declaration and definition must
match
• A value’s const-ness is part of the value’s type

• In header (.h) file (or earlier in the .cpp file):
double compute_average(const vector<double> &values);

• In source (.cpp) file:
double compute_average(const vector<double> &values) {

double sum = 0;
for (double v : values)

sum += v;
return sum / (double) values.size();

}

Guidelines for C++ Argument Passing

When passing an object as an argument to a function:
• If the function should not modify the object at all, you should pass it by
const reference
• Avoids the overhead of making a copy of the object
• Avoids the risk of the function accidentally introducing side-effects
• This is the most common scenario!

• If the function is supposed to mutate the object on behalf of the caller, pass
it by non-const reference
• Allows the function to mutate the actual object passed by the caller
• Tends to be a very uncommon situation

• If the function implementation wants to mutate the argument, without
those changes being visible to the caller, pass by value
• The function will receive a copy of the argument, which it can change to its

heart’s content, without the caller seeing the changes
• Will incur copying overhead
• Also tends to be uncommon, but can be very useful technique

Guidelines for C++ Argument Passing (2)

When passing a primitive as an argument to a function:
• e.g. int, long, char, float, double, a pointer type

• These values are small, and fast to pass as arguments – generally will
always pass them by value
• Passing them by reference or const-reference can actually be slightly
slower than passing them by value!

• If the function is supposed to mutate the primitive value on behalf of
the caller, pass it by non-const reference
• Again, allows the function to mutate the actual variable passed by the caller
• Also tends to be a very uncommon situation

User-Defined Classes and const

• Our previous example:
double compute_distance(Point a, Point b) {

double dx = b.get_x() - a.get_x();
double dy = b.get_y() - a.get_y();
return sqrt(dx * dx + dy * dy);

}

• Need to change this to use const references
• Function doesn’t change its arguments
• Want to avoid overhead of copying these objects

• Updated code:
double compute_distance(const Point &a, const Point &b) {

double dx = b.get_x() - a.get_x();
double dy = b.get_y() - a.get_y();
return sqrt(dx * dx + dy * dy);

}

User-Defined Classes and const (2)

• Updated code:
double compute_distance(const Point &a, const Point &b) {

double dx = b.get_x() - a.get_x();
double dy = b.get_y() - a.get_y();
return sqrt(dx * dx + dy * dy);

}

• Unfortunately, the compiler won’t accept this program L
• Issue: The compiler doesn’t know that get_x() and get_y() do

not mutate the Point objects they are called on
• Need to update our class declaration/definition to indicate that
get_x() and get_y() don’t mutate the object they are called on

Point Class Declaration – point.h

// A 2D point class
class Point {

double x, y; // Data-members

public:
Point(); // Constructors
Point(double x, double y);

~Point(); // Destructor

double get_x() const; // Accessors
double get_y() const;
void set_x(double x); // Mutators
void set_y(double y);

};
22

Point Class Definition – point.cpp

// Returns X-coordinate of a Point
double Point::get_x() const {

return x;
}

// Returns Y-coordinate of a Point
double Point::get_y() const {

return y;
}

// Sets X-coordinate of a Point
void Point::set_x(double x) {

this->x = x;
}

// Sets Y-coordinate of a Point
void Point::set_y(double y) {

this->y = y;
}

23

User-Defined Classes and const (3)

• Updated code:
double compute_distance(const Point &a, const Point &b) {

double dx = b.get_x() - a.get_x();
double dy = b.get_y() - a.get_y();
return sqrt(dx * dx + dy * dy);

}

• Once our Point class specifies that get_x() / get_y() don’t
change the object they are called on, this code will compile and work
perfectly

This Week’s Homework

• Complete the functionality of our units-converter

• Initialize the collection of unit-conversions from a data file, rather
than specifying conversions in the code
• Update main program to report errors when file can’t be opened, or when

file contents specify a conversion rule more than once

• Update your entire program to pass arguments by references, and
use the const keyword, wherever it is appropriate to do so
• Follow the guidelines given in today’s lecture

• Add one more clever feature to your UnitConverter class!
• If your converter knows how to convert from unit A to unit B, and from unit B

to unit C, then we should also support converting from unit A to unit C

25

