
CS11 Intro C++
Spring 2018 – Lecture 2

C++ Compilation

• You type:
g++ -Wall -Werror units.cpp convert.cpp -o convert

• What happens?

• C++ compilation is a multi-step process:
• Preprocessing
• Compilation
• Linking

• Different steps have different kinds of errors
• …very helpful to understand what is going on!

C++ Compilation: Overview

• For preprocessing and compilation phases, each source file is
handled separately
g++ -Wall -Werror units.cpp convert.cpp -o convert

• Compiler performs preprocessing and compilation on units.cpp
and convert.cpp separately
• Produces units.o and convert.o

• The linking phase combines the results of the compilation phase
• units.o and convert.o are combined into a single executable program

named convert

The Preprocessor

• Step 1: The Preprocessor
• Prepares source files for compilation

• Performs various text-processing operations on each source file:
• Removes all comments from the source file
• Handles preprocessor directives, such as #include and #define

• Example: units.cpp: #include "units.h"
• Preprocessor removes this line from units.cpp, and replaces it

with the contents of the file units.h

• For each input source file (i.e. each .cpp file):
• The preprocessor generates a translation unit - the input that the compiler

actually compiles

The Compiler

• The compiler takes a translation unit, and translates it from C++ code
into machine code
• i.e. from instructions that human beings understand, into instructions that

your processor understands

• Result is called an object file
• (Technically, it’s called a “relocatable object file,” but everyone just calls it an

“object file”)
• e.g. units.o and convert.o

• These are not runnable programs, but they contain the machine-code
instructions from your program

The Compiler: Object Files

• Object files are incomplete! They specify, among other things:

• Each function that is defined within the translation unit, along with
its machine code
• e.g. units.o contains a definition of “UValue convert_to(...)”
• This includes the function’s actual machine-code instructions

• Each function that is referred to by the translation unit, but whose
definition is not specified
• e.g. convert.o uses convert_to(), but doesn’t have a definition of the

function

The Linker

• The linker takes the object files generated by the compiler, and
combines them together
• Many object files refer to functions that they don’t actually

implement

• Linker makes sure that every required function is defined in some
object file

• Two main kinds of errors:
• Linker can’t find any definition of a function
• Linker finds multiple definitions of a function!

Linker Errors

• Example: you forget to include main()
• Example output on Mac OS X:

Undefined symbols for architecture x86_64:
"_main", referenced from:

implicit entry/start for main executable
ld: symbol(s) not found for architecture x86_64

• ld is the linker program used by g++

• These errors don’t occur during compilation
• Compilation has succeeded, but the linker can’t find definitions for some

functions

Final Compilation Notes

• Generally, compilers don’t leave intermediate files around anymore
• They use much more efficient ways of passing translation units and object

files to each other

• Can compile a source file without linking it:
g++ -Wall -Werror -c units.cpp
• Performs preprocessing and compilation
• Produces units.o

• Can save other output files from preprocessor and compiler
g++ -Wall --save-temps -c units.cpp
• units.ii is result of running the preprocessor
• units.s is a text version of the processor instructions

Units-Converter, Round 1

• First lab focused on writing a simple units-converter
• Used a UValue class to package a value and its units together

• A number of issues in the implementation, in the convert_to()
function
• Issue 1: Function hard-codes the unit conversions we can perform

if (from_units == "mi" && to_units == "km")
return UValue{from_value * 1.6, to_units};

else if (from_units == "lb" && to_units == "kg")
return UValue{from_value * 0.45, to_units};

else if (from_units == "gal" && to_units == "l")
return UValue{from_value * 3.79, to_units};

else
return v;

• Issue 2: Don’t have a good way to report a failed conversion

Units-Converter, Round 2

• Would like to make our units-converter much more flexible
• Easier to add unit-conversions to the program

• If we could keep a table of unit-conversion details, could look up
conversions to perform from our table
• Fortunately, C++ provides a large number of useful collections in the

C++ Standard Library
• Example: std::vector is dynamically-resizeable, growable array
• (Just like C++ std::string is a dynamically-resizeable, growable string)

• The concept of a “vector” is independent of the element type…
• C++ provides vectors as a class-template
• A class-template is not a class…
• It is a generic, parameterized pattern for creating classes
• std::vector<T> class-template takes the element-type as a parameter

C++ std::vector<T> (1)

• Vectors have a specific number of elements, reported by size()
vector<int> v1; // Has 0 elements initially
vector<string> v2(10); // Has 10 elements initially

• Can access and mutate elements using array-index operator []
• Valid elements have indexes in the range 0 .. size() - 1
• Warning: If you access an invalid element, you won’t be stopped!

• Can use push_back(T) member function to append new values
• Cost of appending is constant-time (amortized)
• Vector maintains extra space at the end, to facilitate this

• Many other operations provided by vector<T>!
• If you need a growable array, use this type!

C++ std::vector<T> (2)

• Example usage:
#include <vector>

vector<int> v; // A vector that holds int elements
// Put some values into the vector
v.push_back(15);
v.push_back(42);
v.push_back(-9);
cout << "Number of elements: " << v.size() << "\n";
for (int i = 0; i < v.size(); i++)

cout << "v[" << i << "] = " << v[i] << "\n";

• Outputs:
Number of elements: 3
v[0] = 15
v[1] = 42
v[2] = -9

C++ std::vector<T> (3)

• If you don’t care about printing the indexes:
vector<int> v; // A vector that holds int elements
// Put some values into the vector
v.push_back(15);
v.push_back(42);
v.push_back(-9);
cout << "Number of elements: " << v.size() << "\n";
for (int n : v)

cout << " " << n;
cout << "\n";
• A simple example of C++11 range-based for loop

• Outputs:
Number of elements: 3
15 42 -9

C++ and Structs

• C++ includes structs as well as classes

• Main difference:
• Struct members are public by default; class members are private by default
• Can use access-modifiers in structs, just like classes
• Can write constructors, destructors, member functions, operator overloads

on structs, just like classes

• Generally, structs are used when the full functionality of classes isn’t
required
• e.g. just need a heterogeneous data type to hold some data values

C++ and Structs (2)

• Example: a todo-list class
class TodoList {

...
public:

int add_task(string description);
void complete_task(int task_id);

};
• The class must keep track of each task’s ID, description, and whether

the task has been completed
struct TodoItem {

int id;
string description;
bool completed;

};
• All struct members are public access

C++ and Structs (3)

• TodoList class can use TodoItem struct to record task details
struct TodoItem {

int id;
string description;
bool completed;

};

class TodoList {
int next_id;
vector<TodoItem> items;

public:
int add_task(string description);
void complete_task(int task_id);

};
• External interface remains clean and simple
• Use of this struct is hidden from users of the class

C++ and Structs (4)

• C++ allows class/struct declarations to be nested
class TodoList {

struct TodoItem {
int id;
string description;
bool completed;

};

int next_id;
vector<TodoItem> items;

public:
int add_task(string description);
void complete_task(int task_id);

};
• TodoItem type is in private section of TodoList
• Now, TodoItem type isn’t even visible to code outside of TodoList class

C++ and Structs (5)

• Can specify initial values for structs, just as in C
int TodoList::add_task(string description) {

TodoItem i = {next_id, description, false};
items.push_back(i);
++next_id;

}

• Could even write:
items.push_back({next_id, description, false});

Reporting and Handling Failed Operations

• Consider this function:
double compute_value(double x) {

return sqrt(x - 3.0);
}

• Will it work for all inputs?
• Only works for inputs x >= 3.0

• How to indicate when the computation fails?
• Could use a special return-value… (gross)
• Callers must know what value means “the computation failed”…
• Callers must check the result for this special value

C++ Exceptions

• C++ includes support for exception handling
• Code that detects an error, but doesn’t know what to do about it, can

throw an exception
• Code that can handle the error, but can’t detect it, can catch the

exception
• May be the immediate caller of the function, or may be separated by many

function invocations
• The exception’s type indicates the category of the error/failure
• e.g. out_of_range for index-access functions that receive a bad index
• e.g. regex_error for problems in evaluating regular expressions

• In C++, anything may be thrown as an exception…
• (but please don’t! J)
• Usually, specific classes are created to indicate specific kinds of errors

Reporting a Failure

• Our function can indicate when there is a problem:
double compute_value(double x) {

if (x < 3.0)
throw invalid_argument("x must be >= 3");

return sqrt(x - 3.0);
}

• Now our function can complete in two ways
• Normal completion: function computes and returns sqrt(x – 3)
• Abnormal termination: function detects an error and aborts the

computation
• Many exception classes include state to report nature of the failure
• Caller can use this state to determine the exact nature of the failure

Handling a Failure

• Callers can now be informed when the computation fails:
double x;
cout << "Enter x: ";
cin >> x;
try {

double v = compute_value(x);
cout << "Answer is " << v << "\n";

}
catch (invalid_argument) {

cout << "Error occurred!\n";
}

• If code in the try-block throws an invalid_argument exception,
we will handle it!
• If any other exception is thrown, we don’t want to (or can’t) handle it…

Handling a Failure (2)

• Callers can now be informed when the computation fails:
double x;
cout << "Enter x: ";
cin >> x;
try {

double v = compute_value(x);
cout << "Answer is " << v << "\n";

}
catch (invalid_argument) {

cout << "Error occurred!\n";
}

• If code in the try-block throws an invalid_argument exception,
execution transfers immediately to the corresponding catch-block
• The function doesn’t complete. The “Answer is” output is also skipped.

Handling a Failure (3)

• Can give the caught exception a name, to access its details:
double x;
cout << "Enter x: ";
cin >> x;
try {

double v = compute_value(x);
cout << "Answer is " << v << "\n";

}
catch (invalid_argument e) {

cout << "Error occurred!\n";
cout << e.what() << "\n";

}

• Most C++ standard exceptions include a “what” value for reporting
what happened

Functions and Exceptions

• Exceptions are as much a part of a function’s public interface, as the
arguments and the return-value!
• Extremely important to document what exceptions are thrown, and

the circumstances in which they are thrown.

• Example:
/* Given x, computes the square-root of x - 3.
*
* Throws invalid_argument if x < 3.
*/
double compute_value(double x) {

...
}

This Week’s Homework

• Implement a much more data-driven unit-conversion program
• Make a UnitConverter class that manages a collection of unit-

conversions, using a nested struct and a std::vector data-
member
• Throw exceptions to report various failures
• Main program is updated to use the UnitConverter, and to

handle exceptions that can be thrown

• A test program will also be supplied to exercise your
UnitConverter code

27

