
CS11 Intro C++
Spring 2018 – Lecture 1

Welcome to CS11 Intro C++!

• An introduction to the C++ programming language and tools
• Prerequisites:
• CS11 C track, or equivalent experience with a curly-brace language,

is encouraged but not required

• No books are required for this course
• Lecture slides and assignments are sufficient
• Lecture recordings will also be available

• If you want some reference books:
• A Tour of C++, 2nd Edition
• An overview and survey of C++, by its creator
• Contains good advice on proper C++ usage and

recommended idioms
• Better for more experienced programmers

Welcome to CS11 Intro C++! (2)

• An introduction to the C++ programming language and tools
• Prerequisites:
• CS11 C track, or equivalent experience with a curly-brace language,

is encouraged but not required

• No books are required for this course
• Lecture slides and assignments are sufficient
• Lecture recordings will also be available

• If you want some reference books:
• Programming, 2nd Edition
• Learning to program, using C++, by its creator
• A much expanded version of the previous book
• Good for novice programmers

Assignments and Grading

• Each lecture has a corresponding assignment for exploring the
material
• Labs are due approximately one week later, at noon
• e.g. this term labs will be due on Fridays at noon
• Submit on csman

• Labs are given a 0..3 grade, meaning:
• 3 = excellent (masters all important parts)
• 2 = good (demonstrates mastery of key idea; a few minor issues)
• 1 = insufficient (not passing quality; significant bugs that must be addressed)
• 0 = incorrect (worthy of no credit)

• Must receive at least 75% of all possible points to pass the track
• Can submit up to 2 reworks of assignments to improve grade
• Not uncommon for initial submission to get a 0!
• Don’t take it personally; it’s really not a big deal in CS11 tracks

C++ Compilers

• Two main C++ compilers in use these days

• GNU g++
• Most widely used on Linux systems
• Typically used in cygwin on Windows systems

• LLVM clang++
• The default compiler on Apple MacOSX
• clang++ emulates some basic g++ functionality, but also leaves out many

options

• If unsure, you can find out what you are using:
• “g++ --version” outputs the compiler version

• Example output on a Mac:
• LLVM: “Apple LLVM version 6.0 (clang-600.0.57)”
• GNU: “g++ (MacPorts gcc49 4.9.3_0) 4.9.3”

C++ Compilers (2)

• As long as we can compile and run your code with either GNU g++ or
LLVM clang++, you’re fine
• Can specify the version of C++ to use
• g++ -std=c++14 ...
• clang++ -std=c++14 ...
• (or use -std=c++11 if your compiler doesn’t support C++14)

• Most annoying difference between g++ and clang++ is that the
debuggers are very different
• g++ provides gdb
• clang++ provides lldb
• The debugger commands are significantly different

• If you are on a Mac and want to use g++/gdb, use Homebrew or
MacPorts to install them
• Make sure your path is set up to find GNU g++, and not clang’s “fake g++”

C++ Origins

• Original designer: Bjarne Stroustrup, AT&T Bell Labs
• First versions called “C with Classes” – 1979
• Most language concepts taken from C

• “C with Classes” code was translated into C code, then compiled with the C compiler
• Class system conceptually derived from Simula67

• Name changed to “C++” in 1983
• Continuous evolution of language features
• (as usual)
• Renewed development recently, with C++11, C++14 and upcoming C++17

standard updates

7

C++ Philosophy

“Close to the problem to be solved”
• Elegant, powerful abstractions
• Strong focus on modularity

“Close to the machine”
• Retains C’s focus on performance, and ability to manipulate hardware

and data at a low level
• Good language e.g. for games programming, systems programming, etc.

• “You don’t pay for what you don’t use.”
• Some features have additional cost (e.g. classes, exceptions, runtime type

information)
• If you don’t use them, you don’t incur the cost

8

C++ Components

C++ Core Language
• Syntax, data types, variables, flow control, …
• Functions, classes, templates, …

C++ Standard Library
• Many useful classes and functions written using the core language
• Generic strings, IO streams, exceptions
• Generic containers and algorithms
• The Standard Template Library (STL)

• Multithreading support
• Several other useful facilities

9

Example C++ Program

• Hello, world!
#include <iostream>

using namespace std;

int main() {

cout << "Hello, world!\n";

return 0;

}

• main() function is program’s entry point
• Every C++ program must have exactly one main() function

• Returns 0 to indicate successful completion, nonzero (typically 1..63)
to indicate that an error occurred

10

Compilation

• Save your program in hello.cpp
• Typical C++ extensions are .cpp, .cc, .cxx
• Typical C++ header files are .h, .hpp, .hh, .hxx

• Compile your C++ program
> g++ -std=c++14 -Wall hello.cpp -o hello

> ./hello

Hello, world!

• Typical arguments:
• -Wall Reports all compiler warnings. Always fix these!!!
• -o file Specifies filename output by the compiler

• Defaults to a.out, which isn’t very useful…

11

Console IO in C++

• C uses printf(), scanf(), etc.
• Defined in the C standard header stdio.h
• #include <stdio.h> (or <cstdio> in C++)

• C++ introduces “Stream IO”
• Defined in the C++ standard header iostream
• #include <iostream>

• In this class, we will use C++ stream IO
• printf/scanf can be useful in C++ programs, but we are here to learn C++!

• cin – console input, from “stdin”
• cout – console output, to “stdout”
• Also cerr, which is “stderr,” for error-reporting.

12

Stream Output

• The << operator is overloaded for stream-output
• Compiler figures out when you mean “shift left” and when you mean “output

to stream,” from the context
• Supports all primitive types and some standard classes, e.g. C++ strings

• Example:
string name = "series";

int n = 15;

double sum = 35.2;

cout << "name = " << name << "\n"

<< "n = " << n << "\n"

<< "sum = " << sum << "\n";

• Note: Line up << operators to improve code readability

13

Stream Input

• The >> operator is overloaded for stream-input
• Also supports primitive types and C++ strings.

• Example:
float x, y;

cout << "Enter x and y coordinates: ";

cin >> x >> y;

• Input values are whitespace-delimited.
Enter x and y coordinates: 3.2 -5.6

Enter x and y coordinates: 4

35

14

C++ Namespaces

• Namespaces are used to group related items
• All C++ Standard Library code is in the std namespace
• string, cin, cout are part of Standard Library

• Can either write namespace::name everywhere…
std::string name;

std::cin >> name;

std::cout << "Hello, " << name << "\n";

• Or, declare that you are using the namespace!
using namespace std;

string name;

cin >> name;

cout << "Hello, " << name << "\n";

• namespace::name form is called a qualified name

15

C++ Classes

• C++ classes are made up of members

• Data members are variables that appear in objects of the class’ type
• They store the object’s state
• Also called member variables or fields

• Member functions are operations that can be performed on objects
of the class’ type
• These functions usually involve the data members

• Several different categories of member functions

16

Member Function Types

• Constructors initialize new instances of a class
• Can take arguments, but not required. No return value.
• Every class has at least one constructor
• No-argument constructor is called default constructor
• Several other special kinds of constructors too

• Destructors clean up an instance of a class
• This is where an instance’s dynamically-allocated resources are released

• (The compiler knows how to clean up everything else)
• No arguments, no return value
• Every class has exactly one destructor

17

Member Function Types

• Accessors allow internal state to be retrieved
• Provide control over when and how data is exposed

• Mutators allow internal state to be modified
• Provide control over when and how changes can be made

• Accessors and mutators guard access to (and mutation of) an object’s
internal state values
• Generally don’t want to expose internal state!
• Instead, provide accessors and mutators to govern when and how internal

state is exposed and manipulated

18

Abstraction and Encapsulation

• Abstraction:
• Present a clean, simplified interface
• Hide unnecessary detail from users of the class (e.g. implementation details)
• They usually don’t care about these details!
• Let them concentrate on the problem they are solving.

• Encapsulation:
• Allow an object to protect its internal state from external access and

modification
• The object itself governs all internal state-changes
• Methods can ensure only valid state changes

19

Declarations and Definitions

• C++ distinguishes between the declaration of a class, and its
definition.
• The declaration describes member variables and functions, and their

access constraints.
• This is put in the “header” file, e.g. point.h

• The definition specifies the behavior – the actual code of the
member functions.
• This is put in a corresponding .cpp file, e.g. point.cpp

• Users of our classes include only the declarations
• #include "point.h"
• People usually don’t care how the types work internally; just how to use

them to solve other problems

20

C++ Access Modifiers

• The class declaration states what is exposed and what is hidden.
• Three access-modifiers in C++
• public – Anybody can access it
• private – Only the class itself can access it
• protected – We’ll get to this later…

• The default access-level for classes is private.
• In general, other code can only access the public parts of your

classes.

21

Point Class Declaration – point.h

// A 2D point class

class Point {

double x, y; // Data-members

public:

Point(); // Constructors

Point(double x, double y);

~Point(); // Destructor

double get_x(); // Accessors

double get_y();

void set_x(double x); // Mutators

void set_y(double y);

};
22

Defining Point Behavior – point.cpp (1)

#include ”point.h"

// Default (aka no-argument) constructor

Point::Point() {

x = 0;

y = 0;

}

// Two-argument constructor - sets point to (x, y)

Point::Point(double x, double y) {

this->x = x;

this->y = y;

}

// Cleans up a Point object.

Point::~Point() {

// No dynamically allocated resources; nothing to do!

}
23

Variable Shadowing

• A somewhat confusing situation:
Point::Point() {

x = 0;

y = 0;
}

Point::Point(double x, double y) {
this->x = x;

this->y = y;

}

• In C++, variables in an inner scope can shadow a variable in an outer scope
• The data-members x and y are defined at the object scope
• Additionally, function arguments x and y are arguments to the constructor, and

these shadow the data-members
• Consequence: If you say “x” or “y” by itself, compiler assumes you mean the

function argument, not the data-member
• (In general, compiler uses the variable at the narrowest scope)

Variable Shadowing (2)

• A somewhat confusing situation:
Point::Point() {

x = 0;
y = 0;

}

Point::Point(double x, double y) {
this->x = x;
this->y = y;

}

• A simple solution: use this to resolve the ambiguity, when needed
• “this” is a pointer to the object that member function is being invoked on
• Built into the C++ language, available in member-functions, but not regular

functions (exactly like Java “this” or Python “self”)
• In this example, “this” has the type Point*, because the member

function is part of the Point class.

Defining Point Behavior – point.cpp (2)

// Returns X-coordinate of a Point

double Point::get_x() {

return x;

}

// Returns Y-coordinate of a Point

double Point::get_y() {

return y;

}

// Sets X-coordinate of a Point

void Point::set_x(double x) {

this->x = x;

}

// Sets Y-coordinate of a Point

void Point::set_y(double y) {

this->y = y;

}

26

Using the Point Type

• Now we have a new type to use!
#include "point.h"

Point p1; // Calls default constructor

Point p2{3, 5}; // Calls 2-arg constructor

cout << "P2 = (" << p2.get_x()

<< "," << p2.get_y() << ")\n";

p1.set_x(210);

p1.set_y(154);

• Point’s private members cannot be accessed directly.
• p1.x = 452; // Compiler reports an error!
• cout << p2.y; // Compiler reports an error!

27

The C++ std::string Class

• C++ retains the C notion of char* as a “string”
• An array of char values, terminated with a 0 value (a.k.a. “the null

character” or “NUL”)

• Typically difficult / bug-prone to manipulate in complex ways…
• Have to manually allocate and reallocate space to hold string data
• Can easily write past end of string (buffer overflows, exploits!)
• Can easily forget to free memory used by C strings

• C++ also introduces a new std::string type
• Resizable string that keeps data in heap memory
• #include <string>

• Provides many features over char* strings
• Can manipulate strings easily, without manual memory management
• Supports stream IO with >> and << operators

• Prefer string to char*, wherever possible!!!

The C++ std::string Class (2)

• Usage of std::string is very intuitive
string name;

cout << "What is your name? ";

cin >> name;

cout << "Hello " << name << "!\n";

• Setting initial values, or mutating string values, is also easy
string favorite_color{"green"};

string mood = "happy";

mood = "cheery";

• Will cover C++ string functionality in much more detail in the future!

This Week’s Homework

• For the next few weeks, we will build a simple units-conversion utility
• When finished, it will be quite powerful

• This week:
• Start practicing the basic concepts of C++ class declaration, and start creating

the machinery for our utility
• Focus on good coding style and commenting
• Figure out what C++ compiler you have, and how to invoke it
• Figure out how to compile your program on your computer
• Test your program’s correctness

30

