
CS11 Advanced C++
Spring 2020 – C++ Standard Library Templates

The C++ Standard Library

• The C++ Standard Library makes heavy use of both class
and function templates
• Example:

• std::string is an instantiation of std::basic_string<char>
• Also std::wstring, std::u32string, etc.

• The collection templates are a very well known part of
the C++ Standard Library
• Very sophisticated class templates to provide collection

functionality for programs
• These collections, associated algorithms, and iterators,

used to be known as the Standard Template Library
• Now they are simply the “C++ Standard Library collections”

Standard Template Library (STL)

• The STL is a very influential library and set of
approaches to providing generic containers
• Primary architect: Alexander Stepanov
• AT&T Bell Labs, then later Hewlett Packard

• Andrew Koenig motivated proposal to
ANSI/ISO Committee in 1994
• Proposal accepted/standardized in 1994
• Continuous refinements, increased support

C++ Standard Library / STL

• The STL aimed to provide a set of generic containers,
algorithms, and iterators that provide many of the basic
algorithms and data structures of computer science
• Generic

• Heavily parameterized; lots of templates
• Containers

• Collections of other objects, with various characteristics
• Algorithms

• For manipulating the data stored in containers
• Iterators

• “A generalization of pointers”
• Cleanly decouple algorithms from containers

A Simple STL Example

• You want an array of numbers
std::vector<int> v{3}; // Vector of 3 elems
v[0] = 7;
v[1] = v[0] + 3;
v[2] = v[0] + v[1];

• Now you want to reverse their order
std::reverse(v.begin(), v.end());

• vector<int> is the generic container
• reverse() is a generic algorithm
• reverse() uses iterators associated with v

C++ Standard Library Algorithms

• Algorithms are generic function templates
• (well, mostly…)
• Parameterized on iterator type – not container

• Example: the find() algorithm
template <typename InputIterator, typename T>
InputIterator find(InputIterator first,

InputIterator last,
const T& value) {

while (first != last && *first != value) ++first;
return first;

}
• Searches for value in range [first, last).

Algorithms and Iterators

template <typename InputIterator, typename T>
InputIterator find(InputIterator first,

InputIterator last,
const T& value) {

• InputIterator isn’t a specific type
while (first != last && *first != value) ++first;

• Just needs to support * (dereference), ++ (increment), and
equality operators

• Pointers also satisfy these constraints
float a[5] = { 1.1, 2.3, -4.7, 3.6, 5.2 };
float *pVal;
pVal = find(a, a + 5, 3.6); // float* as iterators

The Big Picture

• This set of required functionality for the iterator-
type is called a concept
• In this case, the concept is named “InputIterator”

• A type that satisfies these requirements is said to
“model the concept”
• Or, it “conforms to the concept”

• Example:
• int* is a model of Input Iterator because int*

provides all of the operations that are specified by the
Input Iterator requirements

What about reverse()?

• The reverse() algorithm needs more!
• Specifically, its iterators also need the -- operator.

• reverse()’s arguments must model the
BidirectionalIterator concept.
• Like InputIterator, but with more requirements.

• BidirectionalIterator refines the InputIterator
concept.
• This is exactly like class-inheritance
• Different terms because these aren’t classes

Iterator Concept Hierarchy

• Trivial Iterator – supports dereference
• That’s it. Yep, it’s trivial.

• Input Iterator – supports increment
• Only read support is guaranteed.
• Only single-pass support guaranteed.

• Forward Iterator – like Input Iterator
• Supports multi-pass algorithms.

• Bidirectional Iterator – supports decrement
• Random Access Iterator

• Supports arbitrary-size steps forward and backward

Output Iterators

• Output Iterators don’t appear in the iterator
concept hierarchy
• Different, very limited set of requirements
• Support assignment
• Support increment
• Support postincrement-and-assign

• *iter++ = value;

• “It’s like a tape.”
• You can write to the current location
• You can advance to the next location

Function Objects

• Anything that can be called like a function
• A generalization of functions
• Can be a true function pointer
• Can be an instance of a class that overloads ()

• Allows customization of algorithm operations
• Can pass these things to C++ Standard Library algorithms

• Also known as “functors”

Function Pointers

• C/C++ functions can be referred to by name
• sin(x), cos(x), sqrt(x), etc.

• Can also refer to functions via function pointers
• Like a normal pointer, but function can be called through it
• Function’s signature is part of the pointer’s type

• Number and types of arguments, return type
• Above funcs take a double and return a double

• A function pointer for them could be like this:
double (*fp)(double);

• Variable name is fp
• Points to a function that takes a double and returns a
double

Using Function Pointers

• Normally refer to functions to invoke them
double rot = coord * sin(angle);

• Invokes sin, using angle as argument

• Can also get a function’s address via its name
double (*fp)(double);
...
fp = sin; // No arguments to sin here!
...
double res = fp(input);

• Use fp like a normal function
• Can set fp to any function with the same signature

• sin, cos, tan, sqrt, log, exp, your own functions, etc.

Functor Concepts

• Generator f()
• No arguments.

• Unary Function f(x)
• One argument.

• Binary Function f(x, y)
• Two arguments.

• Special concepts for bool return-types
• Predicate bool p(x)
• Binary Predicate bool p(x, y)

• Others, too…

Simple Functor Example

• You want a collection of 100 random values
vector<int> values{100};
generate(values.begin(), values.end(), rand);

• Can create and use your own generator functions
int randomColorValue() {
return rand() & 0x00FFFFFF;

}
...
vector<int> randColors{10};
generate(randColors.begin(), randColors.end(),
randomColorValue);

Functors with State

• You want the sum of a vector of integer values
• Create a functor with state
• A class with overloaded () is perfect for this

struct adder {
int sum;
adder() : sum{0} { }
void operator()(int x) { sum += x; }

};

• Apply functor with for_each algorithm
adder result =
for_each(values.begin(), values.end(), adder{});

cout << "Sum is " << result.sum << "\n";

The for_each() Algorithm

• Example implementation of for_each():
template <typename InputIterator, typename Function>
Function for_each(InputIterator first,

InputIterator last, Function f) {
while (first != last) {

f(*first);
++first;

}
return f;

}

• Our example:
adder result =
for_each(values.begin(), values.end(), adder{});

• An adder object is initialized; a copy is passed to for_each()
• Function-template uses object f as a function on each element
• Function returns the object f, which is then copied into result

Printing The Numbers

• Now you want to print the numbers, separated
with commas.
• Use copy() algorithm and Output Iterators

copy(values.begin(), values.end(),
ostream_iterator<int>(cout, ", "));

• Note that ostream_iterator template-param must
match element-type of collection.

C++ Standard Library

• C++ Standard Library function objects are much more
sophisticated than the examples in this lecture
• Reason: C++ also supports function-object

composition, partial binding of arguments, etc.
• Implementation details are pretty baroque, and not nearly as

elegant as that provided by functional languages
• Details are also changing in C++17, C++20!
• (Much of the current complexity is to support backward

compatibility, and will disappear in C++17/C++20)

• Nonetheless, simple implementations like this can be
used to customize collection and algorithm behavior

