
CS 179: GPU Programming

Lecture 11 / Homework 4

Breadth-First Search

• Given source vertex S:

– Find min. #edges to reach every
vertex from S

– (Assume source is vertex 0)

0

1 1 2

2 3

• Sequential pseudocode:
let Q be a queue

Q.enqueue(source)

label source as discovered

source.value <- 0

while Q is not empty

v ← Q.dequeue()

for all edges from v to w in G.adjacentEdges(v):

if w is not labeled as discovered

Q.enqueue(w)

label w as discovered, w.value <- v.value + 1

Alternate BFS algorithm

• New sequential pseudocode:
Input: Va, Ea, source (graph in “compact adjacency list” format)

Create frontier (F), visited array (X), cost array (C)

F <- (all false)

X <- (all false)

C <- (all infinity)

F[source] <- true

C[source] <- 0

while F is not all false:

for 0 ≤ i < |Va|:

if F[i] is true:

F[i] <- false

X[i] <- true

for Ea[Va[i]] ≤ j < Ea[Va[i+1]]:

if X[j] is false:

C[j] <- C[i] + 1

F[j] <- true

Parallelizable!

GPU-accelerated BFS

• CPU-side pseudocode:
Input: Va, Ea, source (graph in “compact adjacency list” format)

Create frontier (F), visited array (X), cost array (C)

F <- (all false)

X <- (all false)

C <- (all infinity)

F[source] <- true

C[source] <- 0

while F is not all false:

call GPU kernel(F, X, C, Va, Ea)

• GPU-side kernel pseudocode:
if F[threadId] is true:

F[threadId] <- false

X[threadId] <- true

for Ea[Va[threadId]] ≤ j < Ea[Va[threadId + 1]]:

if X[j] is false:

C[j] <- C[threadId] + 1

F[j] <- true

Can represent boolean
values as integers

Texture Memory (and co-stars)

• Another type of memory system, featuring:

– Spatially-cached read-only access

– Avoid coalescing worries

– Interpolation

– (Other) fixed-function capabilities

– Graphics interoperability

X-ray CT Reconstruction

Medical Imaging

• See inside people!

– Critically important in medicine today

"SaddlePE" by James Heilman, MD - Own work. Licensed under CC BY-SA 3.0 via Wikimedia Commons
- http://commons.wikimedia.org/wiki/File:SaddlePE.PNG#/media/File:SaddlePE.PNG

"PAPVR". Licensed under CC BY 3.0 via Wikipedia -
http://en.wikipedia.org/wiki/File:PAPVR.gif#/media/File:PAPVR.gif

X-ray imaging (Radiography)

• “Algorithm”:
– Generate electromagnetic

radiation

– Measure radiation at the
“camera”

• Certain tissues are more
“opaque” to X-rays

• Like photography!

"Coude fp" by MB - Collection personnelle. Licensed under CC BY-SA 2.5 via Wikimedia Commons -
http://commons.wikimedia.org/wiki/File:Coude_fp.PNG#/media/File:Coude_fp.PNG

http://www.imaginis.com/xray/how-does-x-ray-imaginig-work

Radiography limitations

• Generates 2D image of
3D body

• What if we want a “slice”
of 3D body?

– Goal: 3D reconstruction!
(from multiple slices)

"Coude fp" by MB - Collection personnelle. Licensed under CC BY-SA 2.5 via Wikimedia Commons -
http://commons.wikimedia.org/wiki/File:Coude_fp.PNG#/media/File:Coude_fp.PNG

"Computed tomography of human brain - large" by Department of Radiology, Uppsala University
Hospital. Uploaded by Mikael Häggström. - Radiology, Uppsala University Hospital. Brain supplied by
Mikael Häggström. It was taken Mars 23, 2007. Licensed under CC0 via Wikimedia Commons -
http://commons.wikimedia.org/wiki/File:Computed_tomography_of_human_brain_-
_large.png#/media/File:Computed_tomography_of_human_brain_-_large.png

vs.

X-ray Computed Tomography (CT)

http://www.cancer.gov/

"Bonereconstruction" by Original uploader was Zgyorfi at en.wikipedia - Transferred from
en.wikipedia; transferred to Commons by User:Common Good using CommonsHelper.. Licensed
under CC BY-SA 3.0 via Wikimedia Commons -
http://commons.wikimedia.org/wiki/File:Bonereconstruction.jpg#/media/File:Bonereconstruction.jpg

X-ray Computed Tomography (CT)

• Generate 2D “slice” using
3D imaging

– New imaging possibilities!

• Reconstruction less
straightforward

X-ray Computed Tomography (CT)

http://www.thefullwiki.org/Basic_Physics_of_Nuclear_
Medicine/X-Ray_CT_in_Nuclear_Medicine

• “Algorithm” (per-slice):
– Take *lots* of pictures at

different angles
• Each “picture” is a 1-D line

– Reconstruct the many 1-D
pictures into a 2-D image

• Harder, more
computationally intensive!
– 3D reconstruction requires

multiple slices

Mathematical Details

• X-ray CT (per-slice) performs a 2D X-ray
transform (eq. to 2D Radon transform):
– Suppose body density represented by 𝑓(റ𝑥) within

2D slice, റ𝑥 = (𝑥, 𝑦)

– Assume linear attenuation of radiation

– For each line L of radiation measured by detector:

𝐼𝑑𝑒𝑡𝑒𝑐𝑡 = 𝐼𝑒𝑚𝑖𝑡න
𝐿

𝑓 = 𝐼𝑒𝑚𝑖𝑡න
ℝ

𝑓 റ𝑥0 + 𝑡 റ𝜃𝐿 𝑑𝑡

• റ𝜃𝐿: a unit vector in direction of L

Mathematical Details

𝐼𝑑𝑒𝑡𝑒𝑐𝑡 = 𝐼𝑒𝑚𝑖𝑡න
𝐿

𝑓 = 𝐼𝑒𝑚𝑖𝑡න
ℝ

𝑓 റ𝑥0 + 𝑡 റ𝜃𝐿 𝑑𝑡

• Defined as Lebesgue integral – non-oriented

– Opposite radiation direction should have same
attenuation!

– Re-define as:

𝐼𝑑𝑒𝑡𝑒𝑐𝑡 = 𝐼𝑒𝑚𝑖𝑡න
−∞

∞

𝑓 റ𝑥0 + 𝑡 റ𝜃𝐿 |𝑑𝑡|

Mathematical Details

– For each line L of radiation measured by detector:

𝐼𝑑𝑒𝑡𝑒𝑐𝑡 = 𝐼𝑒𝑚𝑖𝑡න
𝐿

𝑓 = 𝐼𝑒𝑚𝑖𝑡න
−∞

∞

𝑓 റ𝑥0 + 𝑡 റ𝜃𝐿 |𝑑𝑡|

• Define general X-ray transform (for all lines L in R2):

(𝑅𝑓) 𝐿 = න
−∞

∞

𝑓 റ𝑥0 + 𝑡 റ𝜃𝐿 |𝑑𝑡|

– Fractional values of attenuation

– റ𝑥0 lies along L

Mathematical Details

• Define general X-ray transform:

(𝑅𝑓) 𝐿 = න
−∞

∞

𝑓 റ𝑥0 + 𝑡 റ𝜃𝐿 |𝑑𝑡|

– Parameterize റ𝜃 = (cos 𝜃, sin 𝜃)

• Redefine as:

(𝑅𝑓) റ𝑥0, 𝜃 = න
−∞

∞

𝑓 റ𝑥0 + 𝑡 റ𝜃 |𝑑𝑡|

– Define for 𝜃 ∈ [0, 2𝜋)

Mathematical Details

(𝑅𝑓) റ𝑥0, 𝜃 = න
−∞

∞

𝑓 റ𝑥0 + 𝑡 റ𝜃 |𝑑𝑡|

• Important properties:

– Many റ𝑥0 are redundant!

– Symmetry: 𝑅𝑓 റ𝑥0, 𝜃 = 𝑅𝑓 റ𝑥0, 𝜃 + 𝜋

• Can define for 𝜃 ∈ [0, 𝜋)

X-ray Computed Tomography (CT)

• Redefined X-ray transform, 𝜃 ∈ [0, 𝜋):

(𝑅𝑓) റ𝑥0, 𝜃 = න
−∞

∞

𝑓 റ𝑥0 + 𝑡 റ𝜃 |𝑑𝑡|

• In reality:

– Only defined for some θ!

X-ray CT Reconstruction

• Given the results of our scan (the sinogram):

(𝑅𝑓) റ𝑥0, 𝜃 = න
−∞

∞

𝑓 റ𝑥0 + 𝑡 റ𝜃 |𝑑𝑡|

• Obtain the original data: (“density” of our body)

𝑓(𝑥, 𝑦)

• In reality:
– This is hard

– We only scanned at certain (discrete) values of θ!
• Consequence: Perfect reconstruction is impossible!

Reconstruction

…

X-ray
emitter

X-ray
detector

Reconstruction

…

X-ray
emitter

X-ray
detector

Different θ’s

Reconstruction

…

X-ray
emitter

X-ray
detector

Different θ’s

Each location on
detector:
Corresponds to
multiple x0’s

X-ray CT Reconstruction

• Given the results of our scan (the sinogram):

(𝑅𝑓) റ𝑥0, 𝜃 = න
−∞

∞

𝑓 റ𝑥0 + 𝑡 റ𝜃 |𝑑𝑡|

• Obtain the original data: (“density” of our body)

𝑓(𝑥, 𝑦)

• In reality:
– This is hard

– We only scanned at certain (discrete) values of θ!
• Consequence: Perfect reconstruction is impossible!

Imperfect Reconstruction

10 angles of imaging 200 angles of imaging

Reconstruction

• Simpler algorithm – backprojection
– Not quite inverse Radon transform!

• Claim: Can reconstruct image as:

𝑓𝑟(റ𝑥) =෍

𝜃

(𝑅𝑓) റ𝑥, 𝜃 =෍

𝜃

න
−∞

∞

𝑓 റ𝑥 + 𝑡 റ𝜃 |𝑑𝑡|

– (θ’s where X-rays are taken)

– In other words: To reconstruct point, sum measurement
along every line passing through that point

Reconstruction

…

X-ray
emitter

X-ray
detector

Different θ’s

Each location on
detector:
Corresponds to
multiple x0’s

Geometry Details

• For x0, need to find:

– At each θ, which radiation measurement
corresponds to the line passing through x0?

Geometry Details

Detector

Emitter

“The patient”
(slice)

Geometry Details

(x0, y0)

Detector

Emitter

“The patient”
(slice)

θ

Geometry Details

Detector

Emitter

“The patient”
(slice)

θ

Distance from
sinogram centerline d

(x0, y0)

Geometry Details

Detector

Emitter

“The patient”
(slice)

θ
Radiation slope:
m = -cos(θ)/sin(θ)

Distance from
sinogram centerline d

(x0, y0)

Geometry Details

Detector

Emitter

θ
Radiation slope:
m = -cos(θ)/sin(θ)

θ

Distance from
sinogram centerline d

Perpendicular slope:
q = -1/m(x0, y0)

Geometry Details

Detector

Emitter

θ
Radiation slope:
m = -cos(θ)/sin(θ)

θ

Distance from
sinogram centerline d

Perpendicular slope:
q = -1/m(x0, y0)

Find intersection
point (xi,yi)
Then d2 = xi

2 + yi
2

d

Intersection point

• Line 1: (point-slope)

𝑦𝑖 − 𝑦0 = 𝑚(𝑥𝑖 − 𝑥0)

• Line 2:
𝑦𝑖 = 𝑞𝑥𝑖

• Combine and solve:

𝑥𝑖 =
𝑦0 −𝑚𝑥0
𝑞 −𝑚

, 𝑦𝑖 = 𝑞𝑥𝑖

Intersection point

• Intersection point:

𝑥𝑖 =
𝑦0 −𝑚𝑥0
𝑞 − 𝑚

, 𝑦𝑖 = 𝑞𝑥𝑖

• Distance from measurement centerline:

𝑑 = 𝑥𝑖
2 + 𝑦𝑖

2

Geometry Details

Detector

Emitter

θ
Radiation slope:
m = -cos(θ)/sin(θ)

θ

Distance from
sinogram centerline d

Perpendicular slope:
q = -1/m(x0, y0)

Find intersection
point (xi,yi)
Then d2 = xi

2 + yi
2

d

Sequential pseudocode

(input: X-ray sinogram):

(allocate output image)

for all y in image:

for all x in image:

for all theta in sinogram:

calculate m from theta

calculate x_i, y_i from -1/m,

calculate d from x_i, y_i

image[x,y] += sinogram[theta, “distance”]

𝑓𝑟(റ𝑥) =෍

𝜃

(𝑅𝑓) റ𝑥, 𝜃

Clarification: Remember not
to confuse geometric x,y
with pixel x,y!

(0,0) geometrically is the
center pixel of the image,
and (0,0) in pixel coordinates
is the upper left hand corner.
Image is indexed row-wise

Clarification:
• d is the distance from the center of the

sinogram – remember to center index
appropriately

• Use –d instead of d as appropriate (when -1/m
> 0 and x_i < 0, or if -1/m < 0 and x_i > 0

Sequential pseudocode

(input: X-ray sinogram):

(allocate output image)

for all y in image:

for all x in image:

for all theta in sinogram:

calculate m from theta

calculate x_i, y_i from -1/m

calculate d from x_i, y_i

image[x,y] += sinogram[theta, “distance”]

Parallelizable!
Inside loop depends
only on x, y, theta

𝑓𝑟(റ𝑥) =෍

𝜃

(𝑅𝑓) റ𝑥, 𝜃

Sequential pseudocode

(input: X-ray sinogram):

(allocate output image)

for all y in image:

for all x in image:

for all theta in sinogram:

calculate m from theta

calculate x_i, y_i from -1/m

calculate d from x_i, y_i

image[x,y] += sinogram[theta, “distance”]

For this assignment, only
parallelize w/r/to x, y

(provides lots of
parallelization already,
other issues)

𝑓𝑟(റ𝑥) =෍

𝜃

(𝑅𝑓) റ𝑥, 𝜃

Cautionary notes

• y in an image is opposite of y geometrically!

– (Graphics/computing convention)

• Edge cases (divide-by-0):

– θ = 0:

• d = x0

– θ = π/2:

• d = y0

Almost a good reconstruction!

Original

Reconstruction

Almost a good reconstruction!

• “Backprojection blur”

– Similar to low-pass
property of SMA (Week 1)

– We need an “anti-blur”!
(opposite of Homework 1)

Almost a good reconstruction!

• Solution:

– A “high-pass filter”

– We can get frequency info
in parallelizable manner!

• (FFT, Week 3)

Almost a good reconstruction!

• Solution:

– A “high-pass filter”

– We can get frequency info
in parallelizable manner!

• (FFT, Week 3)

High-pass filtering

• Instead of filtering on image (2D HPF):

– Filter on sinogram! (1D HPF)

• (Equivalent reconstruction by linearity)

– Use cuFFT batch feature!

• We’ll use a “ramp filter”

– Retained amplitude is

linear function of frequency

Almost a good reconstruction!

• CPU-side:

(input: X-ray sinogram):

calculate FFT on sinogram using cuFFT

call filterKernel on freq-domain data

Calculate IFFT on freq-domain data

-> get new sinogram

• GPU-side:

filterKernel:

Select specific freq-amplitude

based on thread ID

Get new amplitude from

ramp equation

GPU Hardware

• Non-coalesced access!

– Sinogram 0, index ~d0

– Sinogram 1, index ~d1

– Sinogram 2, index ~d2

– …

…

GPU Hardware

• Non-coalesced access!

– Sinogram 0, index ~d0

– Sinogram 1, index ~d1

– Sinogram 2, index ~d2

– …

• However:

– Accesses are 2D spatially local!

…

GPU Hardware

• Solution:

– Cache sinogram in texture memory!

• Read-only (un-modified once we load it)

• Ignore coalescing

• 2D spatial caching!

…

Summary/pseudocode

(input: X-ray sinogram)

Filter sinogram (Slide 46)

Set up 2D texture cache on sinogram (Lecture 10):

Copy to CUDA array (2D)

Set addressing mode (clamp)

Set filter mode (linear, but won’t matter)

Set no normalization

Bind texture to sinogram

Calculate image backprojection (parallelize Slide 39)

• Result: 200-250x speedup! (or more)

• Result: 200-250x speedup! (or more)

Admin

• This topic is harder than before!

– Lots of information

– I may have missed something

– If there’s anything unclear, let us know

• I can (and likely will) make additional slides/explanatory
materials

Admin

• C/CUDA code should work on all machines

• Pre/post-processing:

– Python scripts preprocess.py, postprocess.py

• (To run Python scripts: “python <script>.py”)

– Either:

• Use haru

• Install python, (optionally pip) -> numpy, scipy,
matplotlib, scikit-image

Resources

• Imaging methods:

– X-Ray CT in Nuclear Medicine

– CT Image Reconstruction (Peters, at AAPM)

– Elements of Modern Signal Processing (Candes, at
Stanford)

• Proof that our algorithm works!

http://www.thefullwiki.org/Basic_Physics_of_Nuclear_Medicine/X-Ray_CT_in_Nuclear_Medicine
http://www.aapm.org/meetings/02am/pdf/8372-23331.pdf
http://statweb.stanford.edu/~candes/math262/Lectures/Lecture10.pdf

