
CS 179: GPU Programming

Lecture 10

Topics

• Non-numerical algorithms

– Parallel breadth-first search (BFS)

• Texture memory

• GPUs – good for many numerical
calculations…

• What about “non-numerical” problems?

Graph Algorithms

Graph Algorithms

• Graph G(V, E) consists of:

– Vertices

– Edges (defined by pairs of vertices)

• Complex data structures!

– How to store?

– How to work around?

• Are graph algorithms parallelizable?

Breadth-First Search*

• Given source vertex S:

– Find min. #edges to reach every
vertex from S

*variation

Breadth-First Search*

• Given source vertex S:

– Find min. #edges to reach every
vertex from S

– (Assume source is vertex 0)

*variation

0

1 1 2

2 3

Breadth-First Search*

• Given source vertex S:

– Find min. #edges to reach every
vertex from S

– (Assume source is vertex 0)

0

1 1 2

2 3

• Sequential pseudocode:
 let Q be a queue

 Q.enqueue(source)

 label source as discovered

 source.value <- 0

 while Q is not empty

 v ← Q.dequeue()

 for all edges from v to w in G.adjacentEdges(v):

 if w is not labeled as discovered

 Q.enqueue(w)

 label w as discovered, w.value <- v.value + 1

Breadth-First Search*

• Given source vertex S:

– Find min. #edges to reach every
vertex from S

– (Assume source is vertex 0)

0

1 1 2

2 3

• Sequential pseudocode:
 let Q be a queue

 Q.enqueue(source)

 label source as discovered

 source.value <- 0

 while Q is not empty

 v ← Q.dequeue()

 for all edges from v to w in G.adjacentEdges(v):

 if w is not labeled as discovered

 Q.enqueue(w)

 label w as discovered, w.value <- v.value + 1

Runtime:
O(|V| + |E|)

Representing Graphs

• “Adjacency matrix”

– A: |V| x |V| matrix:

• Aij = 1 if vertices i,j are adjacent, 0 otherwise

– O(V2) space

• “Adjacency list”

– Adjacent vertices noted for each vertex

– O(V + E) space

Representing Graphs

• “Adjacency matrix”

– A: |V| x |V| matrix:

• Aij = 1 if vertices i,j are adjacent, 0 otherwise

– O(V2) space <- hard to fit, more copy overhead

• “Adjacency list”

– Adjacent vertices noted for each vertex

– O(V + E) space <- easy to fit, less copy overhead

Representing Graphs

• “Compact Adjacency List”

– Array Ea: Adjacent vertices to vertex 0, then vertex
1, then … size: O(E)

– Array Va: Delimiters for Ea size: O(V)

0 2 4 8 9 11

1 2 0 2 0 1 3 4 2 2 5 4

0 1 2 3 4 5 Vertex:

Breadth-First Search*

• Given source vertex S:

– Find min. #edges to reach every
vertex from S

– (Assume source is vertex 0)

0

1 1 2

2 3

• Sequential pseudocode:
 let Q be a queue

 Q.enqueue(source)

 label source as discovered

 source.value <- 0

 while Q is not empty

 v ← Q.dequeue()

 for all edges from v to w in G.adjacentEdges(v):

 if w is not labeled as discovered

 Q.enqueue(w)

 label w as discovered, w.value <- v.value + 1

How to “parallelize”
when there’s a queue?

Breadth-First Search*
0

1 1 2

2 3

• Sequential pseudocode:
 let Q be a queue

 Q.enqueue(source)

 label source as discovered

 source.value <- 0

 while Q is not empty

 v ← Q.dequeue()

 for all edges from v to w in G.adjacentEdges(v):

 if w is not labeled as discovered

 Q.enqueue(w)

 label w as discovered, w.value <- v.value + 1

• Why do we use a queue?

BFS Order

"Breadth-first-tree" by Alexander Drichel - Own work. Licensed under
CC BY 3.0 via Wikimedia Commons -
http://commons.wikimedia.org/wiki/File:Breadth-first-
tree.svg#/media/File:Breadth-first-tree.svg

Here, vertex #s are
possible BFS order

BFS Order

"Breadth-first-tree" by Alexander Drichel - Own work. Licensed under
CC BY 3.0 via Wikimedia Commons -
http://commons.wikimedia.org/wiki/File:Breadth-first-
tree.svg#/media/File:Breadth-first-tree.svg

Permutation
within ovals
preserves BFS!

BFS Order

• Queue replaceable if layers preserved!

"Breadth-first-tree" by Alexander Drichel - Own work. Licensed under
CC BY 3.0 via Wikimedia Commons -
http://commons.wikimedia.org/wiki/File:Breadth-first-
tree.svg#/media/File:Breadth-first-tree.svg

Permutation
within ovals
preserves BFS!

Alternate BFS algorithm

• Construct arrays of size |V|:

– “Frontier” (denote F):

• Boolean array - indicating vertices “to be visited” (at
beginning of iteration)

– “Visited” (denote X):

• Boolean array - indicating already-visited vertices

– “Cost” (denote C):

• Integer array - indicating #edges to reach each vertex

• Goal: Populate C

Alternate BFS algorithm

• New sequential pseudocode:
 Input: Va, Ea, source (graph in “compact adjacency list” format)

 Create frontier (F), visited array (X), cost array (C)

 F <- (all false)

 X <- (all false)

 C <- (all infinity)

 F[source] <- true

 C[source] <- 0

 while F is not all false:

 for 0 ≤ i < |Va|:

 if F[i] is true:

 F[i] <- false

 X[i] <- true

 for all neighbors j of i:

 if X[j] is false:

 C[j] <- C[i] + 1

 F[j] <- true

Alternate BFS algorithm

• New sequential pseudocode:
 Input: Va, Ea, source (graph in “compact adjacency list” format)

 Create frontier (F), visited array (X), cost array (C)

 F <- (all false)

 X <- (all false)

 C <- (all infinity)

 F[source] <- true

 C[source] <- 0

 while F is not all false:

 for 0 ≤ i < |Va|:

 if F[i] is true:

 F[i] <- false

 X[i] <- true

 for Ea[Va[i]] ≤ j < Ea[Va[i+1]]:

 if X[j] is false:

 C[j] <- C[i] + 1

 F[j] <- true

Alternate BFS algorithm

• New sequential pseudocode:
 Input: Va, Ea, source (graph in “compact adjacency list” format)

 Create frontier (F), visited array (X), cost array (C)

 F <- (all false)

 X <- (all false)

 C <- (all infinity)

 F[source] <- true

 C[source] <- 0

 while F is not all false:

 for 0 ≤ i < |Va|:

 if F[i] is true:

 F[i] <- false

 X[i] <- true

 for Ea[Va[i]] ≤ j < Ea[Va[i+1]]:

 if X[j] is false:

 C[j] <- C[i] + 1

 F[j] <- true

Parallelizable!

GPU-accelerated BFS

• CPU-side pseudocode:
 Input: Va, Ea, source (graph in “compact adjacency list” format)

 Create frontier (F), visited array (X), cost array (C)

 F <- (all false)

 X <- (all false)

 C <- (all infinity)

 F[source] <- true

 C[source] <- 0

 while F is not all false:

 call GPU kernel(F, X, C, Va, Ea)

• GPU-side kernel pseudocode:
 if F[threadId] is true:

 F[threadId] <- false

 X[threadId] <- true

 for Ea[Va[threadId]] ≤ j < Ea[Va[threadId + 1]]:

 if X[j] is false:

 C[j] <- C[threadId] + 1

 F[j] <- true

Can represent boolean
values as integers

GPU-accelerated BFS

• CPU-side pseudocode:
 Input: Va, Ea, source (graph in “compact adjacency list” format)

 Create frontier (F), visited array (X), cost array (C)

 F <- (all false)

 X <- (all false)

 C <- (all infinity)

 F[source] <- true

 C[source] <- 0

 while F is not all false:

 call GPU kernel(F, X, C, Va, Ea)

• GPU-side kernel pseudocode:
 if F[threadId] is true:

 F[threadId] <- false

 X[threadId] <- true

 for Ea[Va[threadId]] ≤ j < Ea[Va[threadId + 1]]:

 if X[j] is false:

 C[j] <- C[threadId] + 1

 F[j] <- true

Can represent boolean
values as integers

Unsafe operation?

GPU-accelerated BFS

• CPU-side pseudocode:
 Input: Va, Ea, source (graph in “compact adjacency list” format)

 Create frontier (F), visited array (X), cost array (C)

 F <- (all false)

 X <- (all false)

 C <- (all infinity)

 F[source] <- true

 C[source] <- 0

 while F is not all false:

 call GPU kernel(F, X, C, Va, Ea)

• GPU-side kernel pseudocode:
 if F[threadId] is true:

 F[threadId] <- false

 X[threadId] <- true

 for Ea[Va[threadId]] ≤ j < Ea[Va[threadId + 1]]:

 if X[j] is false:

 C[j] <- C[threadId] + 1

 F[j] <- true

Can represent boolean
values as integers

Safe! No ambiguity!

Summary

• Tricky algorithms need drastic measures!

• Resources

– “Accelerating Large Graph Algorithms on the GPU
Using CUDA” (Harish, Narayanan)

Texture Memory

“Ordinary” Memory Hierarchy

http://www.imm.dtu.dk/~beda/SciComp/caches.png

GPU Memory

• Lots of types!

– Global memory

– Shared memory

– Constant memory

GPU Memory

• Lots of types!

– Global memory

– Shared memory

– Constant memory

• Must keep in mind:

– Coalesced access

– Divergence

– Bank conflicts

– Random serialized access

– …

– Size!

Hardware vs. Abstraction

Hardware vs. Abstraction

• Names refer to manner of access on device
memory:

– “Global memory”

– “Constant memory”

– “Texture memory”

Review: Constant Memory

• Read-only access

• 64 KB available, 8 KB cache – small!

• Not “const”!

– Write to region with cudaMemcpyToSymbol()

Review: Constant Memory

• Broadcast reads to half-warps!

– When all threads need same data: Save reads!

• Downside:

– When all threads need different data: Extremely
slow!

Review: Constant Memory

• Example application: Gaussian impulse
response (from HW 1):

– Not changed

– Accessed simultaneously by threads in warp

Texture Memory (and co-stars)

• Another type of memory system, featuring:

– Spatially-cached read-only access

– Avoid coalescing worries

– Interpolation

– (Other) fixed-function capabilities

– Graphics interoperability

Fixed Functions

• Like GPUs in the old days!

• Still important/useful for
certain things

Traditional Caching

• When reading, cache “nearby elements”

– (i.e. cache line)

– Memory is linear!

– Applies to CPU, GPU L1/L2 cache, etc

Traditional Caching

Traditional Caching

• 2D array manipulations:

– One direction goes “against the grain” of caching

• E.g. if array is stored row-major, traveling along “y-
direction” is sub-optimal!

Texture-Memory Caching

• Can cache “spatially!” (2D, 3D)

– Specify dimensions (1D, 2D, 3D) on creation

• 1D applications:

– Interpolation, clipping (later)

– Caching when e.g. coalesced access is infeasible

Texture Memory

• “Memory is just an unshaped bucket of bits”
(CUDA Handbook)

• Need texture reference in order to:

– Interpret data

– Deliver to registers

Texture References

• “Bound” to regions of memory

• Specify (depending on situation):

– Access dimensions (1D, 2D, 3D)

– Interpolation behavior

– “Clamping” behavior

– Normalization

– …

Interpolation

• Can “read between the lines!”

http://cuda-programming.blogspot.com/2013/02/texture-memory-in-cuda-what-is-
texture.html

• Seamlessly handle reads beyond region!

Clamping

http://cuda-programming.blogspot.com/2013/02/texture-memory-in-cuda-what-is-
texture.html

“CUDA Arrays”

• So far, we’ve used standard linear arrays

• “CUDA arrays”:

– Different addressing calculation

• Contiguous addresses have 2D/3D locality!

– Not pointer-addressable

– (Designed specifically for texturing)

Texture Memory

• Texture reference can be attached to:

– Ordinary device-memory array

– “CUDA array”

• Many more capabilities

Texturing Example (2D)

http://www.math.ntu.edu.tw/~wwang/mtxcomp2010/download/cuda_04_ykhung.pdf
http://www.math.ntu.edu.tw/~wwang/mtxcomp2010/download/cuda_04_ykhung.pdf

Texturing Example (2D)

http://www.math.ntu.edu.tw/~wwang/mtxcomp2010/download/cuda_04_ykhung.pdf

Texturing Example (2D)

http://www.math.ntu.edu.tw/~wwang/mtxcomp2010/download/cuda_04_ykhung.pdf

Texturing Example (2D)

