
CS 179: GPU Programming 

Lecture 10 



Topics 

• Non-numerical algorithms 

– Parallel breadth-first search (BFS) 

• Texture memory 



• GPUs – good for many numerical 
calculations… 

 

 

• What about “non-numerical” problems? 



Graph Algorithms 

 



Graph Algorithms 

• Graph G(V, E) consists of: 

– Vertices 

– Edges (defined by pairs of vertices) 

 

• Complex data structures! 

– How to store? 

– How to work around? 

 

• Are graph algorithms parallelizable? 



Breadth-First Search* 

• Given source vertex S: 

– Find min. #edges to reach every 
vertex from S 

 

*variation 
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• Sequential pseudocode: 
  let Q be a queue 

      Q.enqueue(source) 

      label source as discovered 

      source.value <- 0 

 

      while Q is not empty 

         v ← Q.dequeue() 

         for all edges from v to w in G.adjacentEdges(v): 

             if w is not labeled as discovered 

                 Q.enqueue(w) 

                 label w as discovered, w.value <- v.value + 1 
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• Sequential pseudocode: 
  let Q be a queue 

      Q.enqueue(source) 

      label source as discovered 

      source.value <- 0 

 

      while Q is not empty 

         v ← Q.dequeue() 

         for all edges from v to w in G.adjacentEdges(v): 

             if w is not labeled as discovered 

                 Q.enqueue(w) 

                 label w as discovered, w.value <- v.value + 1 

 

Runtime:  
O( |V| + |E| ) 



Representing Graphs 

• “Adjacency matrix” 

– A: |V| x |V| matrix: 

• Aij = 1 if vertices i,j are adjacent, 0 otherwise 

– O(V2) space 

 

• “Adjacency list” 

– Adjacent vertices noted for each vertex 

– O(V + E) space 

 

 

 

 

 



Representing Graphs 

• “Adjacency matrix” 

– A: |V| x |V| matrix: 

• Aij = 1 if vertices i,j are adjacent, 0 otherwise 

– O(V2) space   <- hard to fit, more copy overhead 

 

• “Adjacency list” 

– Adjacent vertices noted for each vertex 

– O(V + E) space   <- easy to fit, less copy overhead 

 

 



Representing Graphs 

• “Compact Adjacency List” 

 

 

 

 

– Array Ea: Adjacent vertices to vertex 0, then vertex 
1, then …     size: O(E)  

– Array Va: Delimiters for Ea  size: O(V)  

0 2 4 8 9 11 

1 2 0 2 0 1 3 4 2 2 5 4 

0 1 2 3 4 5 Vertex: 



Breadth-First Search* 

• Given source vertex S: 

– Find min. #edges to reach every 
vertex from S 

– (Assume source is vertex 0) 
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• Sequential pseudocode: 
  let Q be a queue 

      Q.enqueue(source) 

      label source as discovered 

      source.value <- 0 

 

      while Q is not empty 

         v ← Q.dequeue() 

         for all edges from v to w in G.adjacentEdges(v): 

             if w is not labeled as discovered 

                 Q.enqueue(w) 

                 label w as discovered, w.value <- v.value + 1 

 

How to “parallelize” 
when there’s a queue? 



Breadth-First Search* 
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• Sequential pseudocode: 
  let Q be a queue 

      Q.enqueue(source) 

      label source as discovered 

      source.value <- 0 

 

      while Q is not empty 

         v ← Q.dequeue() 

         for all edges from v to w in G.adjacentEdges(v): 

             if w is not labeled as discovered 

                 Q.enqueue(w) 

                 label w as discovered, w.value <- v.value + 1 

 

• Why do we use a queue? 

 
 

 



BFS Order 

 

"Breadth-first-tree" by Alexander Drichel - Own work. Licensed under 
CC BY 3.0 via Wikimedia Commons - 
http://commons.wikimedia.org/wiki/File:Breadth-first-
tree.svg#/media/File:Breadth-first-tree.svg 

Here, vertex #s are 
possible BFS order 



BFS Order 

 

"Breadth-first-tree" by Alexander Drichel - Own work. Licensed under 
CC BY 3.0 via Wikimedia Commons - 
http://commons.wikimedia.org/wiki/File:Breadth-first-
tree.svg#/media/File:Breadth-first-tree.svg 

Permutation 
within ovals 
preserves BFS! 



BFS Order 

 

 

 

 

 

 

• Queue replaceable if layers preserved! 

"Breadth-first-tree" by Alexander Drichel - Own work. Licensed under 
CC BY 3.0 via Wikimedia Commons - 
http://commons.wikimedia.org/wiki/File:Breadth-first-
tree.svg#/media/File:Breadth-first-tree.svg 

Permutation 
within ovals 
preserves BFS! 



Alternate BFS algorithm 

• Construct arrays of size |V|: 

– “Frontier” (denote F):  

• Boolean array - indicating vertices “to be visited” (at 
beginning of iteration) 

– “Visited” (denote X): 

• Boolean array - indicating already-visited vertices 

– “Cost” (denote C): 

• Integer array - indicating #edges to reach each vertex 

 

• Goal: Populate C 



Alternate BFS algorithm 

• New sequential pseudocode: 
  Input: Va, Ea, source (graph in “compact adjacency list” format) 

      Create frontier (F), visited array (X), cost array (C) 

      F <- (all false) 

      X <- (all false) 

      C <- (all infinity) 

 

      F[source] <- true 

      C[source] <- 0 

      while F is not all false: 

 

         for 0 ≤ i < |Va|: 

            if F[i] is true: 

 

               F[i] <- false 

               X[i] <- true 

 

               for all neighbors j of i: 

                  if X[j] is false: 

 

                     C[j] <- C[i] + 1 

                     F[j] <- true 
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Alternate BFS algorithm 

• New sequential pseudocode: 
  Input: Va, Ea, source (graph in “compact adjacency list” format) 

      Create frontier (F), visited array (X), cost array (C) 

      F <- (all false) 

      X <- (all false) 

      C <- (all infinity) 

 

      F[source] <- true 

      C[source] <- 0 

      while F is not all false: 

 

         for 0 ≤ i < |Va|: 

            if F[i] is true: 

 

               F[i] <- false 

               X[i] <- true 

 

               for Ea[Va[i]] ≤ j < Ea[Va[i+1]]: 

                  if X[j] is false: 

 

                     C[j] <- C[i] + 1 

                     F[j] <- true 

 

 

 

 

Parallelizable! 



GPU-accelerated BFS 

• CPU-side pseudocode: 
  Input: Va, Ea, source (graph in “compact adjacency list” format) 

      Create frontier (F), visited array (X), cost array (C) 

      F <- (all false) 

      X <- (all false) 

      C <- (all infinity) 

 

      F[source] <- true 

      C[source] <- 0 

      while F is not all false: 

         call GPU kernel( F, X, C, Va, Ea ) 

• GPU-side kernel pseudocode: 
            if F[threadId] is true: 

 

               F[threadId] <- false 

               X[threadId] <- true 

 

               for Ea[Va[threadId]] ≤ j < Ea[Va[threadId + 1]]: 

                  if X[j] is false: 

                     C[j] <- C[threadId] + 1 

                     F[j] <- true 

 

 

 

 

 

Can represent boolean 
values as integers 
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Can represent boolean 
values as integers 

Unsafe operation? 



GPU-accelerated BFS 

• CPU-side pseudocode: 
  Input: Va, Ea, source (graph in “compact adjacency list” format) 

      Create frontier (F), visited array (X), cost array (C) 

      F <- (all false) 

      X <- (all false) 

      C <- (all infinity) 

 

      F[source] <- true 

      C[source] <- 0 

      while F is not all false: 

         call GPU kernel( F, X, C, Va, Ea ) 

• GPU-side kernel pseudocode: 
            if F[threadId] is true: 

 

               F[threadId] <- false 

               X[threadId] <- true 

 

               for Ea[Va[threadId]] ≤ j < Ea[Va[threadId + 1]]: 

                  if X[j] is false: 

                     C[j] <- C[threadId] + 1 

                     F[j] <- true 

 

 

 

 

 

Can represent boolean 
values as integers 

Safe! No ambiguity! 



Summary 

• Tricky algorithms need drastic measures! 

 

 

• Resources 

– “Accelerating Large Graph Algorithms on the GPU 
Using CUDA” (Harish, Narayanan) 



Texture Memory 



“Ordinary” Memory Hierarchy 

http://www.imm.dtu.dk/~beda/SciComp/caches.png 



GPU Memory 

• Lots of types! 

– Global memory 

– Shared memory 

– Constant memory 

 

 



GPU Memory 

• Lots of types! 

– Global memory 

– Shared memory 

– Constant memory 

 

• Must keep in mind: 

– Coalesced access 

– Divergence 

– Bank conflicts 

– Random serialized access 

– … 

– Size! 

 

 



Hardware vs. Abstraction 

  



Hardware vs. Abstraction 

• Names refer to manner of access on device 
memory: 

– “Global memory” 

– “Constant memory” 

– “Texture memory” 

 

 



Review: Constant Memory 

• Read-only access 

• 64 KB available, 8 KB cache – small! 

• Not “const”!  

– Write to region with cudaMemcpyToSymbol() 

 



Review: Constant Memory 

• Broadcast reads to half-warps! 

– When all threads need same data: Save reads! 

• Downside: 

– When all threads need different data: Extremely 
slow! 

 



Review: Constant Memory 

• Example application: Gaussian impulse 
response (from HW 1): 

– Not changed 

– Accessed simultaneously by threads in warp 

 



Texture Memory (and co-stars) 

• Another type of memory system, featuring: 

– Spatially-cached read-only access 

– Avoid coalescing worries 

– Interpolation 

– (Other) fixed-function capabilities 

– Graphics interoperability 

 



Fixed Functions 

• Like GPUs in the old days! 

• Still important/useful for 
certain things 



Traditional Caching 

• When reading, cache “nearby elements”  

– (i.e. cache line) 

 

– Memory is linear! 

 

– Applies to CPU, GPU L1/L2 cache, etc 

 

 



Traditional Caching 



Traditional Caching 

• 2D array manipulations: 

– One direction goes “against the grain” of caching 

• E.g. if array is stored row-major, traveling along “y-
direction” is sub-optimal! 



Texture-Memory Caching 

• Can cache “spatially!” (2D, 3D) 

– Specify dimensions (1D, 2D, 3D) on creation 

 

• 1D applications:  

– Interpolation, clipping (later) 

– Caching when e.g. coalesced access is infeasible 

 

 

 



Texture Memory 

• “Memory is just an unshaped bucket of bits” 
(CUDA Handbook) 

• Need texture reference in order to: 

– Interpret data 

– Deliver to registers 



Texture References 

• “Bound” to regions of memory 

• Specify (depending on situation): 

– Access dimensions (1D, 2D, 3D) 

– Interpolation behavior 

– “Clamping” behavior 

– Normalization 

– … 

 



Interpolation 

• Can “read between the lines!” 

http://cuda-programming.blogspot.com/2013/02/texture-memory-in-cuda-what-is-
texture.html 



• Seamlessly handle reads beyond region! 

Clamping 

http://cuda-programming.blogspot.com/2013/02/texture-memory-in-cuda-what-is-
texture.html 



“CUDA Arrays” 

• So far, we’ve used standard linear arrays 

 

• “CUDA arrays”: 

– Different addressing calculation 

• Contiguous addresses have 2D/3D locality!  

 

– Not pointer-addressable 

– (Designed specifically for texturing) 



Texture Memory 

• Texture reference can be attached to: 

– Ordinary device-memory array 

– “CUDA array” 

• Many more capabilities 



Texturing Example (2D) 

 

http://www.math.ntu.edu.tw/~wwang/mtxcomp2010/download/cuda_04_ykhung.pdf 
http://www.math.ntu.edu.tw/~wwang/mtxcomp2010/download/cuda_04_ykhung.pdf 



Texturing Example (2D) 

http://www.math.ntu.edu.tw/~wwang/mtxcomp2010/download/cuda_04_ykhung.pdf 



Texturing Example (2D) 

http://www.math.ntu.edu.tw/~wwang/mtxcomp2010/download/cuda_04_ykhung.pdf 



Texturing Example (2D) 

 


