
CS 179:

GPU Computing

Recitation 2: Synchronization, Shared

memory, Matrix Transpose

Synchronization

Ideal case for parallelism:

● no resources shared between threads

● no communication between threads

Many algorithms that require just a little bit of resource

sharing can still be accelerated by massive parallelism of

GPU

Examples needing synchronization

(1) Parallel BFS

(2) Summing a list of numbers

(3) Loading data into a GPU’s shared memory

__syncthreads()

• __syncthreads()
synchronizes all threads in a

block.

• Remember that shared memory

is per block. Every block that is

launched will have to allocate

shared memory for its own itself

on its resident SM.

• This __synchthreads() call is

very useful for kernels using

shared memory.

Atomic instructions: motivation

Two threads try to increment variable x=42 concurrently.

Final value should be 44.

Possible execution order:
thread 0 load x (=42) into register r0
thread 1 load x (=42) into register r1
thread 0 increment r0 to 43
thread 1 increment r1 to 43
thread 0 store r0 (=43) into x
thread 1 store r1 (=43) into x Actual final value of x: 43

:(

Atomic instructions

• An atomic instruction executes as a single unit, cannot

be interrupted.

• Serializes access

Atomic instructions on CUDA

atomic{Add, Sub, Exch, Min, Max, Inc, Dec, CAS,
And, Or, Xor}

Syntax: atomicAdd(float *address, float val)

Work in both global and shared memory!

(Synchronization) budget advice

Do more cheap things and fewer expensive things!

Example: computing sum of list of numbers

Naive:

each thread atomically increments each number to

accumulator in global memory

Sum example

Smarter solution:
● each thread computes its own sum in register

● use warp shuffle (next slide) to compute sum over warp

● each warp does a single atomic increment to

accumulator in global memory

● Reduce number of atomic instructions by a factor of 32

(warp size)

Warp-synchronous programming

What if I only need to synchronize between all

threads in a warp?

Warps are already synchronized!

Can reduce __syncthreads() calls

Warp shuffle

Read value of register from another thread in warp.

int __shfl(int var, int srcLane, int width=warpSize)

Extremely useful to compute sum of values across a warp.

First available on Kepler (no Fermi, only CC >= 3.0)

Quick Aside: blur_v from Lab 1

Shared memory is great place to

put blur_v.

1) blur_v is relatively small and

easily fits in shared memory.

2) Every thread reads from

blur_v

3) Stride 0 access. No bank

conflicts when i >

GAUSSIAN_SIZE (majority

of threads)

Lab 2

(1) Questions on latency hiding, thread divergence,

coalesced memory access, bank conflicts, instruction

dependencies

(2) What you actually have to do: Need to comment on all

non-coalesced memory accesses and bank conflicts in

provided kernel code. Lastly, improve the matrix

transpose kernel by using cache and memory

optimizations.

Matrix Transpose

An interesting IO problem, because you

have a stride 1 access and a stride n

access. Not a trivial access pattern like

“blur_v” from Lab 1.

Transpose is just a fancy memcpy, so

memcpy provides a great performance

target.

Note: This example output is for a clean

project without the shmem and optimal

kernels completed. Your final output

should show a decline in kernel time for

the different kernels.

Matrix Transpose

__global__
void naiveTransposeKernel(const float *input, float *output, int n) {
// launched with (64, 16) block size and (n / 64, n / 64) grid size
// each block transposes a 64x64 block

const int i = threadIdx.x + 64 * blockIdx.x;
int j = 4 * threadIdx.y + 64 * blockIdx.y;
const int end_j = j + 4;

for (; j < end_j; j++) {
output[j + n * i] = input[i + n * j];

}
}

Shared memory & matrix transpose

Idea to avoid non-coalesced accesses:

● Load from global memory with stride 1

● Store into shared memory with stride x
● __syncthreads()
● Load from shared memory with stride y
● Store to global memory with stride 1

Choose values of x and y perform the transpose.

Bank Conflicts

Let’s populate shared memory with random integers.

Here’s what the first 8 of 32 banks look like:

Example of an SM’s shared memory cache

Bank Conflicts

Example of an SM’s shared memory cache

Bank Conflicts

Example of an SM’s shared memory cache

Bank Conflicts

Example of an SM’s shared memory cache

Avoiding bank conflicts

You can choose x and y to avoid bank conflicts.

Remember that there are 32 banks and the GPU
runs threads in batches of 32 (called warps).

A stride n access to shared memory avoids bank conflicts

iff gcd(n, 32) == 1.

ta_utils.cpp

● Included in the UNIX

version of this set

● Should minimize lag or

infinite waits on GPU

function calls.

● Please leave these

functions in the code if

you are using Haru

● Namespace TA_Utilities

