CS 179:
GPU Computing

Recitation 2: Synchronization, Shared

memory, Matrix Transpose

Synchronization

|deal case for parallelism:
® NO resources shared between threads
e NO communication between threads

Many algorithms that require just a little bit of resource
sharing can still be accelerated by massive parallelism of
GPU

Examples needing synchronization

(1) Parallel BFS
(2) Summing a list of numbers
(3) Loading data into a GPU’s shared memory

f%

(& ¢ 0o o JD

__syncthreads()

[SP || SP | [SP || SP |
[P _|[SP | [5P _|[sP |

Shared Memory

1T

Shared Memory

04g

23

Global Memaory

L sp |[sp |

| sp || sP |

Ir

Shared Memory

cho

Ch2 Ch3 Cha

Chs

__syncthreads()
synchronizes all threads in a
block.

Remember that shared memory
IS per block. Every block that is
launched will have to allocate
shared memory for its own itself
on its resident SM.

This __synchthreads() call is
very useful for kernels using
shared memory.

Atomic Instructions: motivation

Two threads try to increment variable x=42 concurrently.
Final value should be 44.

Possible execution order:
load x (=42) into register ro
load x (=42) into register ril

thread
thread
thread
thread
thread
thread

%)

P OR O®R

increment re to 43
increment rl to 43
store re (=43) into x
store rl (=43) into x

Actual final value of x: 43

(

Atomic Instructions

« An atomic instruction executes as a single unit, cannot
be interrupted.

 Serializes access

Atomic instructions on CUDA

atomic{Add, Sub, Exch, Min, Max, Inc, Dec, CAS,
And, Or, Xor}

Syntax: atomicAdd(float *address, float val)

Work in both global and shared memory!

(Synchronization) budget advice

Do more cheap things and fewer expensive things!
Example: computing sum of list of numbers
Naive:

each thread atomically increments each number to
accumulator in global memory

Sum example

Smarter solution:

each thread computes its own sum in register

use warp shuffle (next slide) to compute sum over warp
each warp does a single atomic increment to
accumulator in global memory

Reduce number of atomic instructions by a factor of 32
(warp size)

Warp-synchronous programming

What if | only need to synchronize between all
threads in a warp?
Warps are already synchronized!

Can reduce _ syncthreads() calls

Warp shuffle

Read value of register from another thread in warp.

int _ shfl(int var, int srclLane, int width=warpSize)

Extremely useful to compute sum of values across a warp.

First available on Kepler (no Fermi, only CC >= 3.0)

Quick Aside: blur_v from Lab 1

blur_device.cu
<cuda_runtime.h>

"blur_device.cuh”

_ global__

roid cudaBlurkernel(float *raw_data, Float:*blur V|, float

int n_frames, int hlur'_v_size) {

; i ¢ GAUSSIAN SIZE; i++) {
5 J <= 15 j+H+)

or (int 3

output_data_host[i] += input data[i

- 31 * blur_v[j];

int i = GAUSSIAN SIZE; i < n_frames; i++) {

{(int j = 8; j < GAUSSIAN SIZE; j4+)

output_data_host[i] += input data[i

- 31 * blur_v[j];

Shared memory is great place to
put blur_v.

1) Dblur_v is relatively small and
easily fits in shared memory.

2) Every thread reads from
blur_v

Stride 0 access. No bank
conflicts when i >
GAUSSIAN_SIZE (majority
of threads)

Lab 2

(1) Questions on latency hiding, thread divergence,
coalesced memory access, bank conflicts, instruction

dependencies

(2) What you actually have to do: Need to comment on all
non-coalesced memory accesses and bank conflicts in
provided kernel code. Lastly, improve the matrix
transpose kernel by using cache and memory
optimizations.

Matrix Transpose

BN CWindows\systemn32iomd.exe

An interesting 10 problem, because you
have a stride 1 access and a stride n
access. Not a trivial access pattern like
“blur_v” from Lab 1.

Transpose is just a fancy memcpy, SO
memcpy provides a great performance
target.

Note: This example output is for a clean
project without the shmem and optimal
kernels completed. Your final output
should show a decline in kernel time for
the different kernels.

Matrix Transpose

__global__

void naiveTransposeKernel(const float *input, float *output, int n) {
// launched with (64, 16) block size and (n / 64, n / 64) grid size
// each block transposes a 64x64 block

const int i = threadIdx.x + 64 * blockIdx.x;
int j = 4 * threadIdx.y + 64 * blockIdx.y;
const int end j = j + 4;

for (; j < end_j; j++) {

output[j + n * i] = input[i + n * j];
¥
¥

Shared memory & matrix transpose

|dea to avoid non-coalesced accesses:

e Load from global memory with stride 1
e Store into shared memory with stride x
e syncthreads()

e Load from shared memory with stride y
e Store to global memory with stride 1

Choose values of x and y perform the transpose.

Example of an SM’s shared memory cache

Let’'s populate shared memory with random integers.
Here's what the first 8 of 32 banks look like:

Example of an SM’s shared memory cache

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank |
Bank 0

No Bank conflicts when all threads read from
OK: the same bank

Example of an SM’s shared memory cache

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank |
Bank 0

OK: No Bank conflicts as long as each bank is only

accessed once.

Example of an SM’s shared memory cache

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank |
Bank 0

Multiple threads accessing the same
bank. Loads become serialized.

Avoiding bank conflicts

You can choose x and y to avoid bank conflicts.

Remember that there are 32 banks and the GPU
runs threads in batches of 32 (called warps).

A stride n access to shared memory avoids bank conflicts
Iff gcd(n, 32) == 1.

ta_utils.cpp

e Included in the UNIX wa_utiitie=.npp -+ |

. . B/ = e e e e e I+

version of this set /7 Th_utilities. hpp -
/{ Allow a shared computer to run smoothly when it is being used
// by students in a CUDA GPU programming course.
i

1N 1 {4/ TA_Utilities.cpp/hpp provide functions that programatically limit
o ShOUId mlnlmlze Iag Or f/ the execution time of the function and select the GPU with the

. L . // lowest temperature to use for kernel calls.

infinite waits on GPU e T

function calls. #pragna once 3

E||namespace TA_Utilities
{
=] /* Create a child thread that will kill the parent thread after the
o Please Ieave these }' specified time limit has been exceeded. UNIX only */
1 : 1 void enforce_time_ limit(int time_ limit);
funCtlonS In the COde If = /* Select the least utilized GPU on this system. Estimate
. GPU utilization using GPU temperature. UNIX only. */

yOU are USIng Haru |Void select_coldest_GPU();

b -
W03 |4 b

e Namespace TA_Utilities

