CS179: GPU
Programming

LECTURE 5: GPU COMPUTE ARCHITECTURE

-]

Last time...

GPU Memory System
o Different kinds of memory pools, caches, etc
o Different optimization techniques

Warp Schedulers

Warp schedulers find a warp that is ready to execute its next instruction and available execution
cores and then start execution

° GK110: 4 warp schedulers, 2 dispatchers in each SM
o Starts instructions in up to 4 warps each clock,
> and starts up to 2 instructions in each warp.

GK110 (Kepler) numbers

max threads / SM = 2048 (64 warps)
max threads / block = 1024 (32 warps)
32 bit registers / SM = 64k

max shared memory / SM = 48KB

The number of blocks that run concurrently on a SM depends on the resource requirements of the
block!

Occupancy

occupancy = warps per SM / max warps per SM

max warps / SM depends only on GPU

warps / SM depends on warps / block, registers / block, shared memory / block.

GK110 Occupancy

100% occupancy 50% occupancy
® 2 blocks of 1024 threads ° 1 block of 1024 threads
® 32 registers/thread ® 64 registers/thread

® 24KB of shared memory / block e 48KB of shared memory / block

This lecture

[e]

Synchronization

Atomic Operations

Instruction Dependencies
Instruction Level Parallelism (ILP)

o

o

o

Synchronization

Synchronization is a process by which multiple threads must indirectly communicate
with each other in order to make sure they do not clash with each other

o Example of a synchronization issue:
°cintx=1;
o Thread 1 wants to add 1 to x;
o Thread 2 wants to add 1 to x;
° Thread 1 reads in the value of x (which is 1) into a register
> Thread 2 reads in the value of x (which is still 1) into a register

> Both threads increment the values they read in but they both think the final value
is 2

° They write x back out and the final result is 2

Synchronization

On a CPU, you can solve synchronization issues using Locks, Semaphores, Condition Variables, etc.
On a GPU, these solutions introduce too much memory and process overhead
° We have simpler solutions better suited for parallel programs

CUDA Synchronization

Use the __ syncthreads() function to sync threads within a block
> Only works at the block level
° SMs are separate from each other so can't do better than this
o Similar to barrier() function in C/C++

Atomic Operations

Atomic Operations are operations that ONLY happen in sequence
> For example, if you want to add up N numbers by adding the numbers to a variable that starts
in 0, you must add one number at a time
> Don't do this though. We'll talk about better ways to do this in the next lecture. Only use
when you have no other options
CUDA provides built in atomic operations
> Use the functions: atomic<op>(float *address, float val);
> Replace <op> with one of: Add, Sub, Exch, Min, Max, Inc, Dec, And, Or, Xor
° e.g. atomicAdd(float *address, float val) for atomic addition
> These functions are all implemented using a function called atomicCAS(int *address, int compare, int val)

o CAS stands for compare and swap. The function compares *address to compare and swaps the value to
val if the values are different

Instruction Dependencies

An Instruction Dependency is a requirement relationship acc += x[o1:
between instructions that force a sequential execution S K4
> In the example on the right, each summation call must acc += x[1];
happen in sequence because the value of acc depends - -

on the previous summation as well acc += Xx[2];
Can be caused by direct dependencies or requirements set . 51 .
by the execution order of code acc += X| 3 40

° |.e. You can't start an instruction until all previous . e
operations have been completed in a single thread

Instruction Level Parallelism (ILP)

Instruction Level Parallelism is when you avoid performances losses caused by
instruction dependencies

> In CUDA, also removes performances losses caused by how certain operations
are handled by the hardware

ILP Example

z0 = x[0] + y[0]; X0 = x[0];
z1 = x[1] + y[1]; yo = y[0];
Z0 = X0 + yO;
[;t :> x1 = x[1];
COMPILATION
yl = y[1];
z1l = x1 + y1;

* The second half of the code can't start execution until the first half completes

ILP Example

z0 = x[0] + y[0]; X0 = x[0];
z1 = x[1] + y[1]; yo = yl@];
x1l = x[1];
yl = yl1];
N\ > Z0 = X0 + yO;
COMPILATION
z1l = x1 + y1;

« Sequential nature of the code due to instruction dependency has been minimized.
« Additionally, this code minimizes the number of memory transactions required

Questions?

[e]

Synchronization

Atomic Operations

Instruction Dependencies
Instruction Level Parallelism (ILP)

o

o

o

Next time...

Set 2 Rec on Friday (04/06)
GPU based algorithms (next week)

