
CS 179 Lecture 14
Pipeline parallelism and Multi–GPU 

Programming

1



Last time

HD 0

HD 1 kernel 0

HD 2 kernel 1 DH 0

HD 3 kernel 2 DH 1

HD 4 kernel 3 DH 2

HD 5 kernel 4 DH 3

HD 6 kernel 5 DH 4

HD 7 kernel 6 DH 5

HD 0

kernel 0

DH 0

HD 1

kernel 1

DH 1

HD 2

kernel 2

streams

2



Today

● Pipeline parallelism

● Programming multiple GPUs

General theme of week:

Using all of your computational resources in 

parallel.

3



Data Parallelism (figures from James Reinders)

4

Converting all characters in an array to upper-case:

No dependencies



Task Parallelism

5



Pipeline Parallelism

6

Parallelizing over one iteration



Pipeline parallelism on GPU
while (1) {

cudaMemcpy(d_in, h_in, input_size, cudaMemcpyHostToDevice);

kernel<<<grid, block>>>(d_input, d_output);

cudaMemcpy(h_out, d_out, output_size, cudaMemcpyDeviceToHost);

}

3 stage pipeline:

Host to Device Kernel Device to Host

7



HD 0

HD 1 kernel 0

HD 2 kernel 1 DH 0

HD 3 kernel 2 DH 1

HD 4 kernel 3 DH 2

HD 5 kernel 4 DH 3

Stage computed by: HD copy 

engine

SM’s DH copy 

engine

Stage 0 Stage 1 Stage 2

Pipeline parallelism in action

time

8



What are the latency and throughput of a pipeline?

(Hint: Analyze with with respect to latency and throughput 

of each stage of pipeline)

Pipeline analysis

9



Pipeline analysis

Stage throughput = 1 / (stage latency)

Pipeline throughput = minimum of stage throughputs

Pipeline latency = sum of stage latencies

All of this assumes a stage can handle one packet of data 

at a time.

10



Pipeline throughput 

= minimum of stage throughputs

= minimum of (1 / stage latency)

= 1 / (maximum stage latency)

Equal because we assume each stage can only handle one 

packet of data at a time…

11

Pipeline throughput analysis



Multiple GPUs

12

Can put multiple GPUs in a 

single computer.

CUDA provides interfaces 

to dispatch work to more 

than 1 GPU.

haru has 3x GTX 570



Simple interface

cudaGetDeviceCount -

how many CUDA capable GPUs?

cudaSetDevice(int i) -

execute future commands on GPU i. 

NVIDIA refers to multiple GPUs as “peers”

13



Data movement

Thanks to unified virtual addressing, you can just use 

cudaMemcpy with cudaMemcpyDefault to move data 

between GPUs.

Actually possible to DMA to one GPU from another and 

skip the host entirely.

Memcpy breaks concurrency on both GPUs.

14



Data access

Depending on hardware and motherboard layout, peers 

can have ability to directly access each other’s memory 

over PCI-E.

cudaDeviceCanAccessPeer tells if access is possible

cudaDeviceEnablePeerAccess enables peer access.

15



Peer access example

Peer access is asymmetric

16

// allow device 0 to access device 1 memory
cudaSetDevice(0);
cudaDeviceEnablePeerAccess(1, 0);

// allow device 1 to access device 0 memory
cudaSetDevice(1);
cudaDeviceEnablePeerAccess(0, 0);



Peer access use cases & alternative

Peer access use cases are similar to using pinned host 

memory (both involve all accesses going over PCI-E).

Simpler alternative: use managed memory! Also accessible 

on host, cudaMallocManaged

17



GPU/GPU synchronization

Problem: 

synchronize 2 GPUs without synchronizing full system 

(all GPUs + CPU)

Solution:

cudaStreamWaitEvent. Record an event one 1 

GPU and have the other GPUs stream synchronize with it 

(but not with CPU).

18



Driving multiple GPUs

2 common options:

● single threaded process

● one thread per GPU

19



How many threads?

Single thread / process

Pros:

● simple

Cons:

● constantly have to call 
cudaSetDevice

20

One thread / GPU

Pros:

● call cudaSetDevice 
once per thread

● plays nice with MPI

● can use multiple CPU 

cores for computation

Cons:

● complex



cuBLAS-XT

NVIDIA’s cuBLAS-XT(Basic Linear Algebra Subprograms) library 

takes advantage of the sort of full system parallelism we’ve been 

talking about.

Input: arbitrarily sized matrices in host memory

Output: matrix product in host memory

Programming multiple GPUs is almost like programming a 

distributed system. Want to minimize communication.

Worth exploring for course projects
21



GPUs across multiple machines

More or less the same as doing scientific computation on a 

cluster without GPUs.

MPI commonly used. MPI is a standard API for 

communicating data between distributed processed.

For some networking hardware (such as Infiniband), it’s 

possible to DMA data straight from network adapter to 

GPU. This is expensive territory!

22



Conclusion

Pipeline parallelism is a great way to think about utilizing all 

available hardware.

Multiple GPUs can increase throughput through either data 

or pipeline parallelism.

Both parallelizing and distributing of algorithms requires 

careful thought about dependencies (or equivalently 

synchronization and communication).

23


