
CS 179 Lecture 13
Host-Device Data Transfer

1

Moving data is slow

So far we’ve only considered performance when the data is

already on the GPU

This neglects the slowest part of GPU programming:

getting data on and off of GPU

2

Moving data is important

Intelligently moving data allows processing data larger than

GPU global memory (~6GB)

Absolutely critical for real-time or streaming applications

(common in computer vision, data analytics, control

systems)

3

VRAM

Max VRAM on a GPU (Nvidia Maxwell): 12 GB

Max RAM on a CPU (Xeon E7): 1536 GB

1. VRAM is soldered directly onto the graphics card, allowing the VRAM modules to sit

closely to the GPU, allowing quicker transfer between VRAM and GPU, increasing

graphics performance. Secondly, sockets and circuits most likely would cause GPU

prices to go up.

2. The next generation of Nviida GPUs (Pascal) will supposedly feature 32 GB of

memory in the top of the line versions.

4

Matrix transpose: another look

Time(%) Time Calls Avg Name
49.35% 29.581ms 1 29.581ms [CUDA memcpy DtoH]
47.48% 28.462ms 1 28.462ms [CUDA memcpy HtoD]
3.17% 1.9000ms 1 1.9000ms naiveTransposeKernel

Only 3% of time spent

in kernel! 97% of time

spent moving data

onto and off GPU!

Copying between host

and GPU is SLOW.
5

Lecture Outline

● IO strategy

● CUDA streams

● CUDA events

● How it all works: virtual memory, command

buffers

● Pinned host memory

● Managed memory

6

A common pattern

while (1) {
cudaMemcpy(d_input, h_input, input_size)
kernel<<<grid, block>>>(d_input, d_output)
cudaMemcpy(output, d_output, output_size)

}

Throughput limited by IO!

How can we hide the latency?

7

Dreams & Reality

HD 0

kernel 0

DH 0

HD 1

kernel 1

DH 1

HD 2

kernel 2

Reality

HD 0

HD 1 kernel 0

HD 2 kernel 1 DH 0

HD 3 kernel 2 DH 1

HD 4 kernel 3 DH 2

HD 5 kernel 4 DH 3

HD 6 kernel 5 DH 4

HD 7 kernel 6 DH 5

Dreamstime

8

Turning dreams into reality

What do we need to make the dream happen?
● hardware to run 2 transfers and 1 kernel in parallel

● 2 input buffers

● 2 output buffers

● asynchronous memcpy & kernel invocation

easy, up to programmer

9

Latency hiding checklist

Hardware:

● maximum of 4, 16, or 32 concurrent kernels

(depending on hardware) on CC >= 2.0

● 1 device→host copy engine

● 1 host→device copy engine
(2 copy engines only on newer hardware, some hardware

has single copy engine shared for both directions)

10

Asynchrony

An asynchronous function returns as soon is it called.

There is generally an interface to check if the function is

done and to wait for completion.

Kernel launches are asynchronous.

cudaMemcpy is not.

11

cudaMemcpyAsync

Convenient asynchronous memcpy! Similar arguments to

normal cudaMemcpy.

while (1) {
cudaMemcpyAsync(d_in, h_in, in_size)
kernel<<<grid, block>>>(d_in, d_out)
cudaMemcpyAsync(out, d_out, out_size)

}

Can anyone think of any issues with this code?
12

CUDA Streams

In previous example, need cudaMemcpyAsync to finish

before kernel starts. Luckily, CUDA already does this.

Streams let us enforce ordering of operations and express

dependencies.

Useful blog post describing streams

13

http://devblogs.nvidia.com/parallelforall/how-overlap-data-transfers-cuda-cc/

The null / default stream

When stream is not specified, operation only starts after all

other GPU operations have finished.

CPU code can run concurrently with default stream.

14

Stream example

cudaStream_t s[2];
cudaStreamCreate(&s[0]); cudaStreamCreate(&s[1]);
for (int i = 0; i < 2; i++) {

kernel<<<grid, block, shmem, s[i]>(d_outs[i], d_ins[i]);
cudaMemcpyAsync(h_outs[i], d_outs[i], size, dir, s[i]);

}
for (int i = 0; i < 2; i++) {

cudaStreamSynchronize(s[i]);
cudaStreamDestroy(s[i]);

}
kernels run in parallel!

15

CUDA events

Streams synchronize the GPU (but can synchronize

CPU/GPU with cudaStreamSynchronize)

Events are simpler way to enforce CPU/GPU

synchronization.

Also useful for timing!

16

Events example

#define START_TIMER() { \
gpuErrChk(cudaEventCreate(&start)); \
gpuErrChk(cudaEventCreate(&stop)); \
gpuErrChk(cudaEventRecord(start)); \
}

#define STOP_RECORD_TIMER(name) { \
gpuErrChk(cudaEventRecord(stop)); \
gpuErrChk(cudaEventSynchronize(stop)); \
gpuErrChk(cudaEventElapsedTime(&name, start, stop)); \
gpuErrChk(cudaEventDestroy(start)); \
gpuErrChk(cudaEventDestroy(stop)); \
}

17

Events methods

cudaEventRecord - records that an event has occurred.

Recording happens not at time of call but after all

preceding operations on GPU have finished

cudaEventSynchronize - CPU waits for event to be

recorded

cudaEventElapsedTime - compute time between

recording of events

18

Other stream/event methods

● cudaStreamAddCallback <- Add host function to stream

● cudaStreamQuery <- check if stream completed

● cudaEventQuery <- check if event completed

● cudaDeviceSynchronize <- Wait on all streams

Can also parameterize event recording to happen only after

all preceding operations complete in a given stream (rather

than in all streams)

19

CPU/GPU communication

How exactly do the CPU and GPU

communicate?

20

Virtual Memory

Could give a week of lectures on virtual memory…

Key idea: The memory addresses used in programs do not

correspond to physical locations in memory. A program

deals solely in virtual addresses. There is a table that maps

(process id, address) to physical address.

21

What does virtual memory give us?

Each process can act like it is the only process running.

The same virtual address in different processes can point

to different physical addresses (and values).

Each process can use more than the total system memory.

Store pages of data on disc if there is no room in physical

memory.

Operating system can move pages around physical

memory and disc as needed.

22

Unified Virtual Addressing

On 64-bit OS with GPU of CC >= 2.0, GPU pointers live in

disjoint address space from CPU. Makes it possible to

figure out which memory an address lives on at runtime.

NVIDIA calls it unified virtual addressing (UVA)

cudaMemcpy(dst, src, size, cudaMemcpyDefault),

no need to specify cudaMemcpyHostToDevice or etc.

23

Unified Virtual Addressing/Memory

24

You can think of unified

memory as “smart pinned

memory”. Driver is allowed

to cache memory on host

or any GPU.

Available on CC >= 3.0

cudaMallocManaged/

cudaFree

Virtual memory and GPU

To move data from CPU to GPU, the GPU must access

data on host. GPU is given virtual address.

2 options:

(1)for each word, have the CPU look up physical address

and then perform copy. Discontiguous physical

memory. slow!

(2)tell the OS to keep a page at a fixed location (pinning).

Directly access physical memory on host from GPU

(direct memory access a.k.a. DMA). fast!
25

Memcpy

cudaMemcpy(Async):
Pin a host buffer in the driver.

Copy data from user array into pinned buffer.

Copy data from pinned buffer to GPU.

26

Command buffers (diagram courtesy of CUDA Handbook)

27

pinned host memory

Commands communicated by circular buffer.

Host writes, device reads.

cudaMallocHost allocates pinned memory on the host.

cudaFreeHost to free.

Advantages:

(1)can dereference pointer to pinned host buffers on

device! Lots of PCI-Express (PCI-E) traffic :(

(2)cudaMemcpy is considerably faster when copying

to/from pinned host memory.

28

Taking advantage of pinning

Pinned host memory use cases

● self-referential data structures that are not easy to copy

(such as a linked list)

● deliver output as soon as possible (rather than waiting

for kernel completion and memcpy)

Must synchronize and wait for kernel to finish before

accessing kernel result on host.

29

Disadvantages of pinning

Pinned pages limit freedom of OS memory management.

cudaMallocHost will fail (due to no memory available)

long before malloc.

Coalesced accesses are extra important while accessing

pinned host memory.

Potentially tricky concurrency issues.

30

