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Maximizing a concave function over a convex set.
Maximizing a convex function over a closed bounded 
convex set.
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The problem is to maximize a concave function over a 
convex set.

FUNDAMENTAL THEOREM 1: 
A local optimum is a global optimum.
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Assume the contrary.
Let point x be a local optimum that is NOT a global 
optimum, and let point y be a global optimum.

Consider the line segment between points x and y.
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Local max but not 
global max

Global max

x y
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Since f(y) > f(x), the value of f for every point on the line 
segment between x and y other than x itself, is strictly 
greater than f(x).
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Line segment lies strictly above
f(x) for points other than x

f(x)

x y
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Since the curve is concave, the value of f for every point 
on the line segment is greater than or equal to the value 
of f on the line segment between points:

(x, f(x)) and (y, f(y))



Proof

CS 101, Ec 101 Mathematical Programming 2
6 January 2005 9

Greater than f(x)

x y
Curve lies strictly above

the line segment for points other than x
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Greater than f(x)

Cannot be local 
maximum

x y
Curve lies strictly above

the line segment for points other than x
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Problem: Maximizing convex functions over closed 
bounded convex sets.
Because the feasible region is a closed bounded convex 
set, the feasible region is the set of points that are convex 
combinations of extreme points.
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The extreme points.

Feasible region

Convex combinations of 
extreme points

Feasible region is the set of all convex combinations of extreme points
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Fundamental Theorem 2 

There exists an extreme point 
which is the global maximum of a convex function 

over a closed bounded convex set.
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Assume the contrary.
So there is a global maximum  at a point p that is not an 
extreme point, and no global maximum occurs at an 
extreme point.
Therefore for every extreme point q:

f(p) > f(q)
Point p is a convex combination of some set of extreme 
points. So there exists extreme points x_1, x_2, …,x_k 
and positive scalars r_1, … ,r_k,  that sum to 1 such that:

p = sum over j of r_j * x _j
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Since f is a convex function:
f(sum over j of r_j * x_j) 

=<
Sum over j of r_j * f(x_j)

If for every j, f(x_j) is strictly less than the global 
maximum, then the right hand side of the above 
inequality is strictly less than the global maximum, and 
so the left hand side is also strictly less than the global 
maximum. But, the left hand side is f(p). Hence p is not a 
global maximum. Contradiction!
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Local maximum 
is 

global maximum

There exists an extreme point
which is a global maximum



Introduction to Linear 
Programming

17
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Which of the fundamental theorems can we apply if the 
objective function is linear?
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Which of the fundamental theorems can we apply if the 
objective function is linear?
BOTH fundamental theorems because linear functions 
are both concave functions and convex functions!
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Maximizing linear functions over closed bounded convex 
sets allows us to use both theorems. So:

Every local maximum is a global maximum, and
There exists an extreme point that is a global maximum.
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Start at an extreme point.
While the extreme point is not  a local maximum do

traverse along the boundary of the feasible region to a 
better neighboring extreme point, i.e., a point with a 
higher value of the objective function.
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Can we simplify the problem if the feasible region is 
bounded by hyperplanes?
The feasible region is a polyhedron with a finite number 
of extreme points.
So, we know the algorithm will stop because the while 
loop never returns to the same extreme point.
So, the loop can iterate at most N times where N is the 
number of extreme points of the polyhedron representing 
the feasible region.
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Start at an extreme point.
If it is not a local maximum find a direction of improvement 
along a boundary to a neighboring better extreme point.



Algorithm for Linear Problems

CS 101, Ec 101 Mathematical Programming 2
6 January 2005 24

Start at an extreme point.
If it is not a local maximum find a direction of improvement 
along a boundary to a neighboring better extreme point.
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If the extreme point is not a local maximum find a direction of 
improvement along a boundary to a neighboring better extreme 
point.
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If the extreme point is a local maximum, stop.
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Linear programming is mathematical programming where the 
objective function and constraints are linear.

Example:
Maximize z
Where  3x0 + 2x1 = z
Subject to:

2x0 +  x1 =< 4
x0 + 2x1 =< 6

x0, x1   >=  0
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For now, we restrict ourselves to problems of the form:

Maximize z where
c.x = z
Subject to:
A.x =< b
x >= 0
Where:
• c is an row vector of length n, 
• x is a column vector of length n, 
• A is an m x n matrix, and 
• b is a column vector of length m with all values non-negative
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C = [ 3,   2]

2    1
1    2

A =

4
6b =

x0

x1
x =

Example:
Maximize z
Where  3x0 + 2x1 = z
Subject to:

2x0 +  x1 =< 4
x0 + 2x1 =< 6

x0, x1   >=  0
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Convert the inequalities to equalities.

Example:
Maximize z
Where  3x0 + 2x1 = z
Subject to:

2x0 +  x1 =< 4
x0 + 2x1 =< 6

x0, x1   >=  0 

Example:
Maximize z
Where  3x0 + 2x1 + 0s0 + 0s1 =  z
Subject to:

2x0 +  x1 +  s0 +  0s1 = 4
x0 + 2x1 +  0s0 +  s1  =  6

x0, x1, s0, s1 >=  0 
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Max z
Where c.x = z

Subject to:
A. x =< b

x >= 0

Max z
Where c.x + 0.s = z

Subject to:
A. x  + I.s = b

x, s >= 0

Here I is the identity matrix
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The constraints represent constraints on resources.
The columns represent activities.
The objective function represents revenue.



Relationship to Economics

CS 101, Ec 101 Mathematical Programming 2
6 January 2005 33

Maximize z
Where  4x0 + 5x1 + 9x2 = z
Subject to:

2x0 +  x1 +  3x2 =< 6
x0 + 2x1 + 4x2 =< 9

x0, x1   >=  0

Example: A furniture maker has two 
scarce resources: wood and labor. The 
company has 6 units of wood and 9 units 
of labor. The company can make small 
tables, chairs, or cupboards. A table 
requires 2 units of wood and 1 unit of 
labor and produces revenue of 4 units. A 
chair requires 1 unit of wood and 2 units 
of labor and produces a revenue of 5 
units. A cupboards requires 3 units of 
wood, 4 of labor and produces a revenue 
of 9 units. How many tables, chairs and 
cupboards should the company make to 
maximize revenue?
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A feasible solution is a vector X such that:
A.X =< b, and X >= 0.

A basic solution is one in which at most m variables are non-zero 
(and so at least n-m variables are strictly zero), and the m, possibly 
non-zero variables correspond to linearly independent columns.
Let B be the matrix obtained by putting together the columns of the 
possibly non-zero variables. Let the m-vector formed by putting 
these variables together be xB. Then the basic solution is 

xB = B-1.b, 
and all other variables are strictly zero.
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Maximize z
Where  4x0 + 5x1 + 9x2 + 0s0 + 0s1 = z
Subject to:

2x0 +  x1 +  3x2 +  s0 +  0s1 = 6
x0 + 2x1 + 4x2 +  0s0 +  s1 = 9

x0, x1   >=  0

Example 1:
Basic variables are s0, s1.
Non-basic variables are x0, x1 , x2.
The columns corresponding to the  

basic variables are the last two 
columns, i.e.,  

1 0
0    1

So, the basic solution is 
s0, s1 = 6, 9 and x0, x1 , x2 = 0, 0, 0
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Maximize z
Where  4x0 + 5x1 + 9x2 + 0s0 + 0s1 = z
Subject to:

2x0 +  x1 +  3x2 +  s0 +  0s1 = 6
x0 + 2x1 + 4x2 +  0s0 +  s1 = 9

x0, x1   >=  0

Example 2:
Basic variables are x0, x1.
Non-basic variables are x2, s0 , s1.
The columns corresponding to the  

basic variables are the first two 
columns, i.e.,  

2    1
1    2

So, the basic solution is 
x0, x1 = 1, 4 and x2, s0 , s1 = 0, 0, 0
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Maximize z
Where  4x0 + 5x1 + 9x2 + 0s0 + 0s1 = z
Subject to:

2x0 +  x1 +  3x2 +  s0 +  0s1 = 6
x0 + 2x1 + 4x2 +  0s0 +  s1 = 9

x0, x1   >=  0

Example 3:
Basic variables are x1, s0.
Non-basic variables are x0, x2 , s1.
The columns corresponding to the  

basic variables are the first two 
columns, i.e.,  

1   1
2   0

So, the basic solution is 
x1, s0 = 4.5, 1.5 and 
x0, x2 , s1 = 0, 0, 0
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The slack variable is the variable we added to turn a 
constraint into an equality.
We have one slack variable for every constraint.
If a slack variable is positive in a solution, that means 
that the inequality constraint is not tight. In other words, 
we are not using all of that resource. This implies that 
the resource is not scarce.
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A solution is an extreme point of the feasible region if 
and only if it is a basic feasible solution.
Proof:
First prove that every basic feasible solution is an 
extreme point.
Then prove that every feasible solution that is not a basic 
solution, is not an extreme point.
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Proof:
Let p be a basic feasible solution. Let u and v be two 
feasible solutions, distinct from p, such that the line 
segment between u and v passes through p.
Thus p is a weighted average of u and v with positive 
weights.
Since u and v are feasible, their elements are non-
negative.
The only way that weighted average (with positive 
weights) of non-negative numbers is strictly zero is for 
the numbers themselves to be strictly zero too.
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Hence the values of non-basic variables in u and v are 
strictly zero.
Therefore, the values of the basic variables in both u and 
v must be:  B-1.b
This is the same as the solution for p.
Hence u and v are not distinct from p: contradiction!
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Proof:
Assume there are m+1 or more variables that are strictly positive in a 
solution p.
The column corresponding to at least one of these variables, say  , is 
linearly dependent on the remaining columns.
Consider a solution u obtained by perturbing solution p by increasing 
xk by arbitrarily small positive epsilon and adjusting m positive 
variables in p so that u is feasible.
Consider a solution v, obtained in the same way by decreasing  xk by 
arbitrarily small positive delta.
Show that p can be obtained by a linear combination of u and v.
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Consider the problem:
Max z where c.x = z subject to A.x + I.s = b, and x,s>=0.

The basic feasible solution x = 0, s = b is locally optimum 
if all the elements of c are non-positive.
Proof: c.x is non-positive since c is non-positive and x is 
non-negative. Hence z = 0 is an optimal solution.
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Start with a basic feasible solution: say x = 0, s = b, 
where s is the vector of slacks.
While locally-optimum extreme point is not found: do:

Increase the value of a non-basic variable that improves the 
objective function until a basic variable becomes zero.
Modify the basis as follows: Replace the basic variable that has
become zero by the variable that became positive. 
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Start with a basic feasible solution: say x = 0, s = b, 
where s is the vector of slacks.
Always maintain a problem in the canonical form: max z 
where c.x + 0.s = z, subject to A.x + I.s = b, and x, s >= 0
While an element of c is positive: do:

Increase the value of a non-basic variable corresponding to a 
positive c until a basic variable becomes zero.
Modify the basis as follows: Replace the basic variable that has
become zero by the variable corresponding to the positive 
element of c. 
Convert to canonical form.
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Problem is in canonical form:
Max z
Where c.x + 0.s = z
Subject to:
A.x + I.s = b
x, s >= 0
And where b is non-negative.

A basic feasible solution (and hence 
an extreme point) is s = b, x = 0

There are coefficients of c that are 
positive. Increase any variable 
with a positive coefficient, say 
x0

Maximize z
Where  4x0 + 5x1 + 9x2 + 0s0 + 0s1 = z
Subject to:

2x0 +  x1 +  3x2 +  s0 +  0s1 = 6
x0 + 2x1 + 4x2 +  0s0 +  s1 = 9

x0 , x1 , x2 ,  s0 ,  s1 >= 0 
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Maximize z
Where  4x0 + 5x1 + 9x2 + 0s0 + 0s1 = z
Subject to:

2x0 +  x1 +  3x2 +  s0 +  0s1 = 6
x0 + 2x1 + 4x2 +  0s0 +  s1 = 9

x0 , x1 , x2 ,  s0 ,  s1 >= 0 

Keep increasing x0 until some 
currently basic variable 
decreases in value to 0.

How large can we make x0?

Which basic variable decreases to 0 
first?
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Maximize z
Where  4x0 + 5x1 + 9x2 + 0s0 + 0s1 = z
Subject to:

2x0 +  x1 +  3x2 +  s0 +  0s1 = 6
x0 + 2x1 + 4x2 +  0s0 +  s1 = 9

x0 , x1 , x2 ,  s0 ,  s1 >= 0 

Keep increasing x0 until some 
currently basic variable 
decreases in value to 0.

How large can we make x0?

Which basic variable decreases to 0 
first?

When x0 increases to 3, s0 decreases to 0 while s1 is still positive. So, at the next 
basic feasible solution (and hence extreme point) the basic variables are x0 and 
s1, while the other variables, x1, x2 and s0 are strictly 0.
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Maximize z
Where  4x0 + 5x1 + 9x2 + 0s0 + 0s1 = z
Subject to:

2x0 +  x1 +  3x2 +  s0 +  0s1 = 6
x0 + 2x1 + 4x2 +  0s0 +  s1 = 9

x0 , x1 , x2 ,  s0 ,  s1 >= 0 

Old basic variables: s0, s1.

New basic variables: x0, s1.

Convert to canonical form for new 
basic variables.

Convert to canonical form by 
pivoting on the element in the 
column of the incoming basic 
variable (column 1) and in the 
row of the outgoing basic 
variable (row 1).
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Maximize z
Where  4x0 + 5x1 + 9x2 + 0s0 + 0s1 = z
Subject to:

2x0 +  x1 +  3x2 +  s0 +  0s1 = 6
x0 + 2x1 + 4x2 +  0s0 +  s1 = 9

x0 , x1 , x2 ,  s0 ,  s1 >= 0 

Old basic variables: s0, s1.

New basic variables: x0, s1.

Convert to canonical form for new 
basic variables.

Convert to canonical form by 
pivoting on the element in the 
column of the incoming basic 
variable (column 1) and in the 
row of the outgoing basic 
variable (row 1).

pivot
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Maximize z
Where  4x0 + 5x1 + 9x2 + 0s0 + 0s1 = z
Subject to:

2x0 +  x1 +  3x2 +  s0 +  0s1 = 6
x0 + 2x1 + 4x2 +  0s0 +  s1 = 9

x0 , x1 , x2 ,  s0 ,  s1 >= 0 

To pivot, our goal is to make the 
column vector into a unit vector. 
So we want to transform the 
column [4, 2, 1] to [0, 1, 0]. So, 
divide first constraint by 2.

pivot



Examples of Simplex Algorithm

CS 101, Ec 101 Mathematical Programming 2
6 January 2005 52

Maximize z
Where  4x0 + 5x1 + 9x2 + 0s0 + 0s1 = z
Subject to:

1.x0 +  0.5x1 + 1.5x2 +  0.5s0 +  0s1 = 3
x0 + 2x1 + 4x2 +  0s0                  +  s1 = 9

x0 , x1 , x2 ,  s0 ,  s1 >= 0 

To pivot, our goal is to 
make the column 
vector into a unit 
vector. So we 
want to transform 
the column

[4, 1, 1] to [0, 1, 0]. 
So, subtract 4 
times first 
constraint from 
objective function.

pivot
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To pivot, our goal is to 
make the column 
vector into a unit 
vector. So we 
want to transform 
the column

[0, 1, 1] to [0, 1, 0]. 
So, subtract first 
constraint from 
second.

Maximize z
Where  0x0 +    3x1 +       3x2 – 2s0 +   0s1 = z - 12
Subject to:

1.x0 +  0.5x1 + 1.5x2 +  0.5s0 +  0s1 = 3
x0 + 2x1 + 4x2 +  0s0 +  s1 = 9

x0 , x1 , x2 ,  s0 ,  s1 >= 0 

pivot
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To pivot, our goal is to 
make the column 
vector into a unit 
vector. So we 
want to transform 
the column

[0, 1, 1] to [0, 1, 0]. 
So, subtract first 
constraint from 
second.

Maximize z
Where  0x0 +    3x1 +       3x2 – 2s0 +   0s1 = z - 12
Subject to:

1.x0 +  0.5x1 + 1.5x2 +  0.5s0 +  0s1 = 3
0.x0 + 1.5x1 + 2.5x2 - 0.5s0 +  s1 =  6

x0 , x1 , x2 ,  s0 ,  s1 >= 0 

pivot
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The problem is again 
in canonical form.

A basic feasible 
solution is x0 = 3 
and s1 = 6

Are there elements of c 
that are positive?

Yes, coefficient of x1 is 
positive. So, 
increase x1.

Maximize z
Where  0x0 +    3x1 +       3x2 – 2s0 +   0s1 = z - 12
Subject to:

1.x0 +  0.5x1 + 1.5x2 +  0.5s0 +  0s1 = 3
0.x0 + 1.5x1 + 2.5x2 - 0.5s0 +  s1 =  6

x0 , x1 , x2 ,  s0 ,  s1 >= 0 

pivot
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Maximize z
Where  0x0 +    3x1 +       3x2 – 2s0 +   0s1 = z - 12
Subject to:

1.x0 +  0.5x1 + 1.5x2 +  0.5s0 +  0s1 = 3
0.x0 + 1.5x1 + 2.5x2 - 0.5s0 +  s1 =  6

x0 , x1 , x2 ,  s0 ,  s1 >= 0 

What basic variable 
drops to 0 first 
when x1 is 
increased?

pivot
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What basic variable 
drops to 0 first 
when x1 is 
increased?

Maximize z
Where  0x0 +    3x1 +       3x2 – 2s0 +   0s1 = z - 12
Subject to:

1.x0 +  0.5x1 + 1.5x2 +  0.5s0 +  0s1 = 3
0.x0 + 1.5x1 + 2.5x2 - 0.5s0 +  s1 =  6

x0 , x1 , x2 ,  s0 ,  s1 >= 0 

pivot When x1 is increased to 4, s1 drops to 0 while x0
remains positive. So, the new basic variables are 
x0 and x1.
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Old basic variables:
x0, s1

New basic variables:
x0, x1

Convert to canonical 
form with new basic 
variables.

Pivot on column of 
incoming basic 
variable and row of 
outgoing basic 
variables

Maximize z
Where  0x0 +    3x1 +       3x2 – 2s0 +   0s1 = z - 12
Subject to:

1.x0 +  0.5x1 + 1.5x2 +  0.5s0 +  0s1 = 3
0.x0 + 1.5x1 + 2.5x2 - 0.5s0 +  s1 =  6

x0 , x1 , x2 ,  s0 ,  s1 >= 0 
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Pivot on column of 
incoming basic 
variable and 
row of 
outgoing basic 
variables

Maximize z
Where  0x0 +    3x1 +       3x2 – 2s0 +   0s1 = z - 12
Subject to:

1.x0 +  0.5x1 + 1.5x2 +  0.5s0 +  0s1 = 3
0.x0 + 1.5x1 + 2.5x2 - 0.5s0 +  s1 =  6

x0 , x1 , x2 ,  s0 ,  s1 >= 0 

pivot
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Maximize z
Where  0x0 +    0x1 - 2x2 – 5s0 - 2s1 = z - 24
Subject to:

1.x0 +  0x1 + 2/3x2 +  1/3s0  - 1/3s1 = 1
0.x0 + 1x1 + 5/3x2 - 1/3s0 +  2/3s1 =  4

x0 , x1 , x2 ,  s0 ,  s1 >= 0 

Problem is once 
again in canonical 
form.

The basic feasible solution for this canonical form is x0 = 1, x1 = 4, with all other 
variables x2, s0, s1 being 0.

Since all coefficients of c are now negative, the solution is a local (and hence 
global) maximum.
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