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Three main points:
Pontryagin added to the mix

mixing Lagrangian, Hamiltonian, and 
Legendre into a unifying approach

Today’s Show
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Legendre into a unifying approach

Non-conservative forces
Noether & Legendre in discrete world

Hamilton-Pontryagin

Continuous Hamilton-Pontryagin
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equivalent to Hamilton’s principle
decouples velocity and position

Hamilton-Pontryagin

Lagrange multiplier = momentum
builds in the Legendre transformation, 
both Hamilton’s configuration space 
and phase space principles
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synthesizes Lagrangian and 
Hamiltonian viewpoints
closely related to Pontryagin’s principle 
in optimal control

Hamilton-Pontryagin

Continuous Hamilton-Pontryagin
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Discrete version:

taking variations with respect to all discrete 
variables gives the algorithm for update

Derivations

Take variations w.r.t. all variables
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Discrete Integration

Algorithm

set initial       and  
solve for 

non-linear root finding
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explicit update

Fully Variational Update

Algorithm

set initial       and  
solve for 

non-linear function minimization

when
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explicit update

Treatment of non-conservative forces
remember Lagrange-d'Alembert?

Back to Regular Hamilton's
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discrete version

Non-Conservative Systems w/ HP

Full control over dissipation forces too
use Pontryagin/d'Alembert principle
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can be used to add a damping model
damping not a side effect of bad numerics
captures energy decay correctly

VarInt vs. RK when forcing is present

Benefit on Numerics
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Discrete Invariance to translation?

variation w.r.t ε

Discrete Noether Theorem
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Therefore:

proof?



Discrete Invariance to Rotations?

same deal

Discrete Noether Theorem
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thus:

remember: triple product rule!

More generally
if the discrete Lagrangian                             
is (infinitesimally) invariant under a 
(left or right) action, there's an 

Discrete Noether Theorem
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( g ) ,
associated discrete momentum exactly 
preserved

More Properties [Marsden & West '01]

Discrete Legendre Transforms

equivalent in the limit
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equivalent in the limit

Symmetry of discrete Lagrangian?

then DEL is symmetric
thus time reversible, and even order


