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Lagrangian/Hamiltonian mechanics
continuing last lecture

pointing to more geometric 
characteristics

Today's Show
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but still in continuous world for now

Physical path extremizes action

ddl

Reminder
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min, max, or saddle

Lagrange-D'Alembert Principle

k d b h l f

Non Conservative Systems
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work created by the external forces
see "virtual work"

forced Euler-Lagrange equations

Conjugate (or canonical) momentum

l f l

Generalized Momentum
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we've seen it last time for particles
but applies for any generalized coord

angular momentum for instance!

N vector for N-DOF system

Suppose invariance of Lagrangian

by one-parameter family of paths
with 

Noether's Theorem (I)
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with 

We define:

Infinitesimal symmetry direction



Invariance of Lagrangian means...
invariance of action

momentum preserved in direction of 

Noether's Theorem (II)
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momentum preserved in direction of 

Symmetries of a dynamical system 
give conserved quantities or 
conservation laws

what's preserved:

Noether's Theorem
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what s preserved:

Reason behind tons of invariances
even in quantum field theory!

Translation Invariance

symmetry: 

Classical Examples
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so:
constant

linear momentum preservation
T has 3 components, by the way

3xN vector!

Rotational Invariance (directional symmetry of  space)

antisymmetric matrix Ω = ω∗

 R( ) (t) i 2D if  f

Classical Examples
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or R(ε ) q(t)  in2D if you prefer

so:
constant

angular momentum preservation

Another example of symmetry/invariance!
systems not depend on time explicitly

laws of physics that don't change w/ time

symmetry for

Energy
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symmetry for
in 4D: 

invariance of

say hello (again) to the Hamiltonian

Let's keep it simple for now
constrain configuration through

restrict motion within manifold

Constrained Systems (I)
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restrict motion within manifold
e.g., pendulum – restricted Lagrangian

Adapting variational principle:



With:
λ = Lagrange multipliers

to enforce constraint

think of it as force to stay on track

Constrained Systems (II)
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think of it as force to stay on track
"tension" of string for pendulum
but no work done! (proof?)

Augmented Lagrangian
(can also be done for Hamiltonian)

Take variations w.r.t. all variables
i i   λ  i

How to Get this New Principle?
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variation w.r.t. λ: constraint
variation w.r.t. q: Lagrange-D'Alembert!

but constraint forces no work

Btw, Noether's still applies

ρ-Reversible Systems

is ρ -reversible if: 
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A map Φ(y) is ρ -reversible if:

(continuous)

Time-Reversible Systems

Example:
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Special Cases:


