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Lagrangian/Hamiltonian mechanics
just an intro

pointing to geometric characteristics
presenting some crucial notions for later

Today's Show
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presenting some crucial notions for later
but all in the continuous world for now

not intended to be complete
restricted to conservative systems
we will extend it later when we need it!

Second Order Systems

Fundamental differential equation

Newtonian point of view
d d  i  ti
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second order in time

Introducing Lagrange and Hamilton...
physical path has geometric properties
rewrite foundations accordingly

Consider a dynamical system
call its configuration q

generalized coordinates of the 
components of the system 

Setup
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p y
positions, angles, ...

we need to describe q(t)
"path" of the system in space-time

How to define the path given q(0) ?

Lagrangian function

K: kinetic energy

Core of Lagrangian Mechanics
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K: kinetic energy
W: potential energy

expression based on model
gravity, elasticity, ...

careful: integral over volume of system

Variational Mechanics

Hamilton’s Stationary Action Principle

Notion of Action

a dynamical system always finds an optimal 
course from one position to another
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Notion of Action
scores paths satisfying boundary conds

0

T



Physical path extremizes action

ddl

Path Property
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min, max, or saddle

Calculus of Variations
To derive this critical point condition...
Assume a small variation (fixed ends)

Reminder
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Do Taylor expansion
identify the linear terms in 

Euler-Lagrange Eqns

Consequence on physical path
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Euler-Lagrange Equation
≈  Newton’s Second Law!

= 0

Example of Euler-Lagrange

Falling mass (1D, with gravity):
q: altitude
Kinetic energy: 
Potential energy:
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Potential energy:
Lagrangian:

Therefore, the equation of motion is:

Hamiltonian Systems

Hamiltonian function 

can (often) be deduced from 
Lagrangian through Legendre 

transformation
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=  position
=  momentum ("mass" times "velocity)

=  total energy (kinetic + potential)

p: generalized momentum
for Cartesian coordinates:

usual linear momenta

Ph   i l

Phase space
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Phase space simple

Notice then that:
with 



Conservation

Take time derivative of Hamiltonian
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Conservation

Take time derivative of Hamiltonian
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the Hamiltonian is constant of motion
value implied by initial conditions

Spring of mass m and stiffness k

Simple Example
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Equations of motion: 

Poisson bracket

L is "First Integral" of Ham  system if

First Integrals
Advection in Hamiltonian flow

CS101 – Numerical Geometric Integration

16

L is First Integral  of Ham. system if

generally, physical quantities
angular momentum for 2-body problems

if n integrals, system called integrable

HamiltonianFlow

For any initial condition            , 
call the map

the "flow" of the system
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the flow  of the system

Hamiltonian dynamics implies flows 
with special properties....

In particular, the map is symplectic
i.e.,

First off, why?
 k

Symplecticity
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we know:
then:
we thus derive:

just expand 
use symmetry of Hessian, antisymmetry of J



Notion of area

area-preserving 2D linear map A iff

Now, What Does It Mean?
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Simplecticity=extension to higher dims!
area-preserv. over 2D cross-sections
preservation of summed projected area

i.e., 

For a pendulum (1 variable)
if you start off a set of trajectories 
occupying some region in phase space, 
that region may get distorted but it will 

Consequences
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g y g
maintain its area

More complex for more variables
volume in phase space preserved too!

Why Is Euler's Bad?

A Look Back
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General ODE methods not symplectic
numerics don't mimic continuous world.

Guess what
we'll develop methods that fix this

Look at What's Coming Up
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we'll develop methods that fix this
... and it will make a huge difference


