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Today's Show

Lagrangian/Hamiltonian mechanics
M just an intro
m pointing to geometric characteristics
m presenting some crucial notions for later
m but all in the continuous world for now
m not intended to be complete
B restricted to conservative systems
m we will extend it later when we need it!
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Second Order Systems

Fundamental differential equation
F=ma
m Newtonian point of view
m second order in time
Introducing Lagrange and Hamilton...
m physical path has geometric properties
m rewrite foundations accordingly
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Setup

Consider a dynamical system
m call its configuration g

B generalized coordinates of the
components of the system

» positions, angles, ...
m we need to describe q(t)
m 'path’ of the system in space-time
How to define the path given q(0) ?
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Core of Lagrangian Mechanics

Lagrangian function
L(g,4) = K(4) —W(Q)
m K: kinetic energy K{(g) = —q’Mq

m W: potential energy

m expression based on model
» gravity, elasticity, ...
m careful: integral over volume of system
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Variational Mechanics

Hamilton’s Stationary Action Principle
a dynamical system always finds an optimal
course from one position to another

Notion of Action
B scores paths satisfying boundary Conds

s@= UM
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Path Property

Physical path extremizes action

T
85(0) =38 | Lai)de=0

B min, max, or saddle = njmof the S/Dom
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Euler-Lagrange Eqns

Consequence on physical path

T T [ s E
a5(q) = d; Lig(t),q(t)) dt = / |:{‘”' - dg 4 “H,‘ -1’5(}] dt

dq g
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Reminder

Calculus of Variations

m To derive this critical point condition...

m Assume a small variation (fixed ends)

g~ q+€dq
m Do Taylor expansion
m identify the linear terms in §¢
F —-F
SF = lim 4 +€99) — F(q)
e—0 €
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Example of Euler-Lagrange

Falling mass (1D, with gravity):
m g altitude
B Kinetic energy: k(g) = —)nq
m Potential energy: w(q) = mgq
® Lagrangian: L{g,¢) = K(4) —W(q)
Therefore, the equation of motion is:
dL d [8L

50 i |3d

d
2 }——mg——(mq) 0

mg = mi
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Hamiltonian Systems

Hamiltonian function H(p,q)

dp  OoH
E - _E can (often) be deduced from
Lagrangian through Legendre
dq oH transformation
dt op H(p.9)=pig—~L(q,q)
. ith p 9£(a.9)
B ¢ = position with p=—3/

B p - momentum (‘mass" times "velocity)
m H - total energy (kinetic + potential)
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Phase space

p: generalized momentum
m for Cartesian coordinates: p; = 3
qi

® usual linear momenta
q= (91,512,~~~,51n)

Phase space simple p=(P1,p2,---,Pn)
z:= (Plyl’zw~~>PmCI1»q27---»qn)T
Notice then that:

= J'VH(z) with 7= <—01 ’0)
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Conservation

Take time derivative of Hamiltonian
dH _Hdp | 9Hdg
dt ~ Opdt  dqdt
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Conservation

Take time derivative of Hamiltonian
dH _ ot dp ot dg
dt  dpdt dqdt
OHOH OHOH
dpdg 9qdp
m the Hamiltonian is constant of motion
m value implied by initial conditions
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Simple Example

Spring of mass m and stiffness k
2
p L
H(p,q) =2+ 2k
(p,q) =5 -+ 5kx
Equations of motion:

__OH p
s _

_OH _
ox

Sk —k
ap m *
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First Integrals N
/[ Advection in Hamiltonian flow |

Poisson bracket /

(HL) =Y <8H oL oH 8L>

i

9pidgi  9g;dp;
L is 'First Integral’ of Ham. system if
(H,L} =0
m generally, physical quantities
m angular momentum for 2-body problems
m if n integrals, system called integrable
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HamiltonianFlow

For any initial condition (po, o),
call the map

0 (po,q0) = (p(1),q(1))
the "flow" of the system

Hamiltonian dynamics implies flows
with special properties....
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Symplecticity

In particulgr, the map is symplectic
| 16,(;—2’)) J(%) =J for all time, for all zy
First off, why?
m we know: (%h)=¥=,- et
m then: (g—i’;) =77 'V2H(¢/(z0)) (g-i’(’))
m we thus derive: , 130\ /a0,
> justexpand  dr (ﬂ) J(E)] -

» use symmetry of Hessian, antisymmetry of ]

CS101 - NUMERICAL GEOMETRIC INTEGRATION




Now, What Does It Mean?

Notion of area
area(u,v) =uxv=ujvy —upvy = u'Jv
m area-preserving 2D linear map A iff
AlJA=1T
Simplecticity=extension to higher dims!
W area-preserv. over 2D cross-sections
m preservation of summed projected area
B ie, a=YdpAdp

¥
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Consequences

For a pendulum (1 variable)

m if you start off a set of trajectories
occupying some region in phase space,
that region may get distorted but it will
maintain its area

More complex for more variables
m volume in phase space preserved too!
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A Look Back
Why Is Euler's Bad?

2
Pev1 1, 2
H(Xp415 Pkt1) = m Ekxk+l

1 2, 1 Pky2
= pr—hk + —k (x3, + h—
B (Pk X%) ) (xk )

kh2 pt 1

—H Pk,
(X, Pr) + - (2m+2 x;)
kh?
:H(xkvpk)[]‘F?}
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Look at What's Coming Up

General ODE methods not symplectic
B numerics don't mimic continuous world.

Guess what
m we'll develop methods that fix this

m ... and it will make a huge difference

CS101 - NUMERICAL GEOMETRIC INTEGRATION




