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Multivariate fcts, come in many types
most common: second order equations

Partial Differential Equations
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encodes various basic phenomena

To each type, its flagship equation
elliptic: 
Poisson equation
parabolic:

Canonical Equations
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parabolic:
heat equation
hyperbolic:
wave equation

Initial 
value 

problems

Wave equation made simpler
generic scalar transport equation

h d d h

Let's Jump Right In
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how to discretize and integrate this?

Taylor to the rescue again...

Discrete transport equation leads to:

Finite Differences
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called FTCS, and is explicit 
forward time, centered space

oh, btw: does not work at all; why?

Von Neumann method
eigenmode
plug it into FTCS

Stability Analysis
Amplification factor
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alas, 
all frequencies get amplified
unconditionally unstable



Slight change to discrete update

same space-time dependency
b ff

Enter Lax (the man, not the airport)
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but now,                  iff
Courant (CFL) condition

quite general for PDEs
never skip a point...
or you won't get convergence

But... Why Did It Work?
Rewrite Lax method, you’ll get:

So the “real” PDE we try to integrate is:
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So the “real” PDE we try to integrate is:

Second-order term: diffusion, killing high frequencies
Called numerical viscosity
Good, but bad… (high frequencies don't overpower low ones)

From Lax, to Leapfrog

CTCS
d d   i   d i

Other Variants
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second-order accurate in space and time

Lax-Wendroff

second-order accurate (Taylor)

We know we're dealing w/ transport
so information "flows" with the wind

Gone With The Wind
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"upwind" methods
only first order, but better! (CFL still)

dissipation (Lax, upwind)
energy loss, smearing

Frequent Types of Num. Errors 

Leveque 20
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dispersion (Lax-Wendroff)
phase errors 

04
Leveque 2004

Plenty of Other Stencils
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fully implicit: CFL no longer needed
but massive damping for large time steps

smaller stencils nicer if non-smooth u
sparser, less Gibbs oscillations near fast changes



Schemes discussed above apply
well, not upwind...
and CFL no longer relevant
ex: FTCS

Heat Equation?
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ex: FTCS
Von Neumann says:

is new condition for stability

Should be obvious by now

boundary conditions need work

Elliptic Equations
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y
less relevant for this class

no time step!

Long list of numerical methods
spectral, finite element, finite volume, ...

finite elements for elliptic equations
arbitrary spatial discretization

More To Life Than F. Differencing
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y p
basis functions to provide discrete fct space
based on minimization on that space
easier handling of boundary conditions

finite volume also quite versatile
and mix of thereof

Facts that will come back again & again
numerical integration not perfect

variety of issues can pop up
may have to pick the least bad

Discrete vs. Differential
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may have to pick the least bad...

discrete scheme may integrate a nearby
differential equation
stability always the delicate thing

Due next monday
closer look at ODEs
implementation

second order ODE

Yeay, Homework!
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second order ODE
separates into 2 

meet with Patrick if (really) necessary
send solutions & notebooks by email

derivations on paper if you prefer


