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Today

Analysis of long-time behavior
m Hopefully fulfill my promises ©
m Backward Error Analysis (BEA)
m Symmetric Integrators (more later)
m Symplectic Integrators
m High-level

B Many theorem details omitted for
brevity - see book for formal statements
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Backward Error Analysis (BEA)

Find the modified Diff. Eq.
m the system being integrated exactly
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modified equation
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Finding the Modified Equation

Won't always
Look for the form converge (will

truncate)

$(0) = F0) +hf3(0)) + B 3(5(0)) +
Definey = (1) f20r t fixed and expand

$+h) = 50+ () + 2 50) +-
=y+h(f() +hH0) +R ) + )
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Finding the Modified Equation

Expand the numerical method*
Dy (y) = y+hf () + W (y) +Id3(y) + -
Set §(r +h) = @, (y) and group h! terms
) =day) ~ 5710)
£0) =d30) — 5 (FH0)+ F4F0)

Computer can

pe g (N0 FAF)
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Simple Example

Explicit Euler
p(y) =y+hf(y)

y=y
m Use Mathematica (HW))...
. 3 8
J=F P +h5 - ke

3
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Lotka-Volterra Example

(a) explicit Euler, h = 0.1

=0.1
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Examples & Observations

y=y

Midpoint

*2+h@ h@@ h@—*&

192”
Order of method  Even (due to symmetry)
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Symmetric Methods

Adjoint Method:
P, =

F0) = (=) f)
B Proof: start with 5(t) = ®_,(5(t + 1))

cI):h

Symmetric Method
fiy)=0 Vj even

3() = FF0)) +hf2(5(0) + 1 f3(50)) +
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p-Reversible Systems

Sidenote: p-compatibility
mif pod,=_j0p thene, isp-
reversible iff @, is symmetric
m Typically true

BEA for p-reversible system

m Ifg, is p-reversible then each f; is p-

reversible Every truncation of
modified system is p-

m Proof by induction on f;  reversible
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Symplectic Methods

Applied to Hamiltonian system
m Modified system is Hamiltonian
® In particular, H; exists s.t.
£i(v) =17 'VH;(y)
m 2 Proofs
m Induction on f; (like symmetric)
B Expand generating function
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Example: Symplectic Euler

S(P.q,h) = hH(P,q)
h & >
A = H =S HyHg-+ T (HppHg + HogH} +4HpqHoH )+
.
Applied to pendulum: H(p,q) = 7 —cosq

. h R/ ., 5
H(p,q) =H(p,q) —5psing+ 15 (sm q+p cosc1)+---

m Not separable
m Not second order (§=—-VU(q) )
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Extensions

BEA for most things we’ve covered
m Constrained Systems

m Adaptive step sizes
m Splitting methods

Similar results for other properties
m Preservation of first integrals

CS101 — Numerical Geometric Integration

Truncation 0= 155
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What Can We Really Say?

Goal

m Explain long-time energy behavior
of symplectic methods

m Fairly pessimistic

Assume:
m f(y) complex analytic around y,
{7l <M for [ly—yol| <2R
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3(1) = F(0)) + R (@) + 12 F(5(0)) + -+

What Can We Really Say?

Then:
® Can bound dj(y) for most methods
m Cauchy’s estimate — bound is uniform
m Estimate and bound f;(y)
m Find optimal truncation N
m Bound [|®4(y0) — w4 (o)l =—
® Bound change in # and H

D(y) = y+hf () +hday(y) + Wda(y) +---

Skipping to
here
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Error of modified equation

Theorem 7.6. Let f(y) be analytic in Bag(yo), let the coefficients dj(y) of the
method (7.3) be analytic in Br(yo), and assume that (7.2) and (7.5) hold. If h <
ho /4 with hg = R/(enM), then there exists N = N(h) (namely N equal to the
largest integer satisfving hN < hq) such that the difference between the numerical
solution yy = Py (yo) and the exact solution 3y +(yo) of the truncated modified
equation (7.11) satisfies

[P (o) — P (o)l < hyMeTho/n

where v = {2 + 1.651 + 1) depends oniy on tire method (we have 5 < n < 5.18
and ~y < 31.4 for the methods of Table 7.1).
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Long-Time Energy Conservation

@, symplectic method
m Then* there exists hyand N s.t
truncated ﬁ(yn) = I:I(yo) + O(eho/zh)
Torms H(yn) = H(yg) + O(hP)

ho/2h
fornh<e doesn’t depend on n

“exponentially long” time interval
m Good: rigor  Bad: very conservative
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