

Today

Numerics
■ when good math goes wrong

CS101 - Numerical Geometric Integration

Terminology
■ good case: $2+2=4$

- not so good case: $1+\pi=4.1416$
- round-off error
\square bad case: $\sin (0.025)=0.025$
■ truncation error
■ worst case
$■$ both truncation and round-off

CS101 - Numerical Geometric Integration

Round-Off Error

Difference between the calculated and exact mathematical value \square finite digits to represent infinite digits
\square a form of quantization error

- commonly: floating-point arithmetic

■ as opposed to fixed-point arithmetic
> fixed location of radix point in the string

CS101 - Numerical Geometric Integration

Truncation Error ${ }_{\text {(warning a mbiginuous sem at best) }}$
Basically, we can't do infinite sums \square finite number of terms in Taylor
\square finite number of iterations in an algo.
Related to order of accuracy \square big "O"
More to come next time on this - not in this lecture

Two parts
■ mantissa: fixed point value m (sign incl.)
■ exponent: integer value e (+bias)
\square represents m. $2^{\mathrm{e}} \quad$ (+subtleties...)
IEEE 754-2008
\square single precision: 24 bits in $\mathrm{m}, 8$ bits in e - double precision: 53 bits in m , 11 bits in e $\pi=40490$ FDB (in hexa)

CS101 - NuMERICAL GEOMETRIC INTEGRATION

Compensated Summation

Crucial Idea: capture rounding errors and feed them back
For $\mathrm{n}=0,1,2 \ldots$

$$
\begin{aligned}
& \square a=y_{n} \\
& \square e=e+\delta_{n} \\
& \square y_{n+1}=a+e \\
& \square e=e+\left(a-y_{n+1}\right)
\end{aligned}
$$

Implicit Update?

Different problem, same remedy

- error mostly due to non-linear solve
\square solver returns result within threshold
- error easily computed as $\varepsilon=D E L$
\square so... feed it back the next time
- as external forcing! [Kharevych]
> remember: DEL + forcing $=0$

