1.) Lie group integrators: examples

2.) Nonholonomic integrators: basics
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Geometric Integration on SO(3)

Consider a system evolving on the group of rotations
G =S0(3)
» configuration: matrix R € SO(3)
> body-fixed velocity Q € s0(3) defined by
Q=R"R
> intertia tensor I : s0(3) — s0(3)*

> Lagrangian

RI(RTR)),

from D.Holm's textbook

L(R,R) = %(RT

> Example: write product using matrix trace
L(R, R)
A= diag((—J1 + b+ _/3)/27 (—_/2 +J + _/3)/2, (—J3 + i+ J2)/2)

with Ji, Jp, J3: principle moments of intertia

7tr(/\RTR)

Discretization

» continuous curve R : [0, T] — SO(3) = set of points
{Ro, ..., Rn}
» approximation using Ry ~ R(kh), with time-step h= T /N

» assume constant velocity along each discrete segment

R(t) ~ (Ris1 — Re)/h, t € [kh, (k+1)A].

> Lagrangian approximated (for t € [kh, (k + 1)h]) according to

LR(t), R(t)) ~ %tr </\ <Rk+1h— Rk>T (Rk+1h— Rk)) '

Using properties of the trace this simplifies to

L(R(E), R() ~ — s tr (ART Rica) € € [k, (K + 1)L

Discrete variational principle

Moser-Veselov / Bobenko-Suris Lie group discrete approach

» Pontryagin-type principle (extra constraint = relax variations)
(Marsden, Pekarsky, Shkoller)

» The discrete trajectory must satisfy

N-1 N

tr(AR] Ris1) Z
k=0 k=0

5 trO (R R — 1)) =

}M—‘

where A\ € R3%3 is a matrix of multipliers enforcing
orthogonality of R. Variations of Ry and Ay are free.

» Note that
R — 1)) = tr(A\[ (R{ R — 1))

then a symmetric matrix A is sufficient to enforce this
condition.

tr(Ak(Ry

Integrator derivation
Taking varitions with respect to each Ry

tr(AR]_10R + NSR] Rii1 — MR OR,) =0
or equivalently
tr(AWi_1 + AW = \me) =0, (1)
where Wy, = RkTRkH and 7, = RkTéRk.
M= AW + AW,
Since Ak is symmetric
AWy + AW = W A+ WA,
and if we define pg = Wi\ — /\WkT, this becomes equivalent to
ik = W g pik—1 Wi—1.

Since puy is skew-symmetric = py € s0(3)*, this can be written as

ke = Ady, | pk-1-

General integrator equations

In summary, the equations of the integrator are

ik = Adjy, ., pk—1, % Momentum update: explicit (2)
e = Wik — AW, | % Legendre transform: implict (3)
W] w =1, % Orthogonality constraint: implict  (4)
Ria1 = ReW. % Rotation update: explicit (5)

Given: #k*l'Wk*IY Rk
First update px from pg—1 and Wi_1 (explicitly); then find Wi
from py (implicitly); update Ry from Ry and Wi (explicitly).

Can we accurately reproduce these periodic
orbits?

The sphere with radius || o]




Direct Solution

» Solve for W in terms of p directly using the matrix elements
W1 as uknowns. The equation = WA — AWT is equivalent
to requiring that

p1 =R W2 — AW,
po = AsW™ — A W3, (6)
s = MW — AW,

where
0 —p3 p2
p=| n 0 —m |,
—p2  p1 0

and A; are the diagonal elements of the matrix A.

» 3 linear equations + 6 orthogonality conditions on W:
9 implicit equations = polynomial roots / Newton method.

Parametrized Solution
Parametrize W = 7(&) using parameters &: e.g.
exponential coordinates, or Cayley parameters

at
T ’>\ G

> Lie algebra identification s0(3) ~ R3. Define™: R3 — s0(3)

0 —Ww3 wo
W= w3 0 -wm (1)
—Wp wi 0

50(3) basis {&1, 6,6}, € € s0(3) where {e1, &, €3} is the

standard R3-basis. Elements & € 50(3) correspond to w € R3

by ¢ = w*e,, or £ = &. Operator Ad becomes Adg w = Rw.
» Example: use the Cayley map

@2
cay() = |+4+‘|‘W (a + 7) . (8)

» In order to compute W given p we solve

= cay(@)\ — Acay(—®)
for the 3 elements of w (implicitly) and then find W = 7(®).

Explicit approximate solution

Use 7 to represent W but trunacte its expression in the Legendre
transform equation

» First order truncation of the exponential map
oxp(6) = X5 b

T(@) = exp(@) = | + .

> The Leg. equation reduces to u = @A + AD, and using
standard inertia matrix J = diag(Ji, J2, J3) in identification
50(3) ~ R3, the integrator is explicit:
wi =W Jwie_q,
Wi = eXp(UJk),
Riy1 = Rk W.
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Nonholonomic Dynamics

Systems with nonintegrable constraint on the velocities
» configuration space
» regular distribution D: collection of subspaces Dy C T4Q
» Lagrangian L: TQ — R,
» control force f : [0, T] — T*Q.

For a curve (q(t), v(t),p(t)) in TR ® T*Q, t € [0, T] the
d'Alembert-Pontryagin principle states that

T T
5./0 [L(g,v) + (p, g — v)] dt + /O (f,8q)dt =0,

d0g € Dg and

(9)

vq € Dy,

for variations that vanish at the endpoints.
Note: nonholonomic vs. vakonomic (6g-cPq)
symplectic structure not preserved in general
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Continuous Equations of Motion

» Constraints D, defined by m functions w? : TQ — R,
a=1,...,m linear in the velocities and satisfy w?(q, g) = 0.
» After taking variations we get

q = v?
oL
p= v’
oL
p— — —f,0q) =0,
(p 9 q)
wi(q)-v=0.
Allowed variations are such that w?(q) - g = 0 and
. oL
p=+ f+ fcony
Jq
where f,, are forces necessary to enforce constraints.

> feon = Aaw?(q) to cancel any acceleration in p — % — f not

aligned with the constraints. A, are called Lagrangian
multipliers denoting the magnitute of the constraint forces.
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The vertical rolling disk
4

~)

R 1 . . 1 . 1.
L(X7y7¢797x7.y7¢79):Em(X2+y2)+§l62+§J¢27

Configuration space Q = SE(2) x S, with pose
(x,y,¢) € SE(2) and the rotation angle § € S*.

» Lagrangian

m: mass, I, J: moments of intertia

» nonholonomic constraints are (with R: the disk radius)
X = R(cos ¢)6, y = R(sin¢)d

or in the form w? - (X, y, b, 9) =0
w! =(1,0,0,—Rcos ), w? =(0,1,0, —Rsin ¢).

> Controlled by torques u® and u?
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The vertical rolling disk: continuous equations
The momentum is

oL

p=5, = (mx my, 19, J6).

The dynamics equation becomes

mx = A1,
my =)y,
lq@ = u">7
J6 = —RcosgpA1 — RsingAp + uf.

Differentiating the constraints and substituting

Jé = u?,
(I + mR?)d =,

which along with the constraints determine the dynamics.

Nonholonomic Discrete Mechanics

Q by set {qo, ..., qn'}
> Approximation: g(kh) ~ qk, where h = T /N is the time-step.

» Discretization: represent g : [0, T] —

» Discrete d'Alembert-Pontryagin principle

=
-

»
Il

0

0qx € Dg, and vk €D

Gkta

where « € [0,1] : determines the interpolate quadrature
point; notation: Xxtq := (1 — @)Xk + axky1-

N-1
5> [hL(Gktar vie) + (Pro (ak1 — k) — hvid)l + Y h{fira, 6Gkra) =0,
k=0

Discrete Equation of Motion

The resulting equations are

Gk+1 = Gk + hvi, % configuration update

oL
Pk = E(qﬂm i), % Legendre transform
% % momentum update

L oL
= (1 - a) ( (qk-%—ou Vk) + fk+a) + (aiq(qk—l-#ou Vk—l) + fk—l+a)

+ (Aa)kw?(qx),

w?(Gkta) - vk = 0. % velocity constraint

Vertical Disk Integrator

Disk velocity v = (vX, v¥, v®, v¢

oL
Pk = E(qkm, Vi) =

). The discrete momentum is
(mvis, mv), v, Ivl)
The discrete constraints are
X _ 0 Yy _ H 0
Vi = Rcos(¢xra) Vi, vy, = Rsin(¢xya)vik-
From the dynamics equation the multipliers can be computed as
Av=m(vi = vig)/h A= m(vy = viy)/h.
Substituting and simplifying the discrete dynamics becomes
( - vl?*l)/h = (1 - O‘)“f 1+a + auf+a
[(J + mR? cos(ahvy )) Vi — (J + mR? cos((1 — @) hv{ )) Vi 1] /h

= (1 Q) g0+ U,

There is a lot more...

We've looked at only the most basic nonholonomic case. Things
get more interesting when

> incorporating group symmetries (the principal bundle case)
» systmes with multiple bodies or internal joints

» studying relation to the continuous case (e.g. what is discrete
connection, discrete curvature, discrete gyroscopic forces, how
is momentum evolution different?)
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