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Geometric Integration on SO(3)

Consider a system evolving on the group of rotations
G = SO(3)

I configuration: matrix R ∈ SO(3)

I body-fixed velocity Ω ∈ so(3) defined by
Ω = RT Ṙ

I intertia tensor I : so(3)→ so(3)∗

I Lagrangian

L(R, Ṙ) =
1

2
〈RT Ṙ, I(RT Ṙ)〉,

from D.Holm’s textbook

I Example: write product using matrix trace

L(R, Ṙ) =
1

2
tr(ΛṘT Ṙ),

Λ = diag((−J1 + J2 + J3)/2, (−J2 + J1 + J3)/2, (−J3 + J1 + J2)/2).

with J1, J2, J3: principle moments of intertia
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Discretization

I continuous curve R : [0,T ]→ SO(3) ⇒ set of points
{R0, ...,RN}

I approximation using Rk ≈ R(kh), with time-step h = T/N

I assume constant velocity along each discrete segment

Ṙ(t) ≈ (Rk+1 − Rk)/h, t ∈ [kh, (k + 1)h].

I Lagrangian approximated (for t ∈ [kh, (k + 1)h]) according to

L(R(t), Ṙ(t)) ≈ 1

2
tr

(
Λ

(
Rk+1 − Rk

h

)T (Rk+1 − Rk

h

))
.

Using properties of the trace this simplifies to

L(R(t), Ṙ(t)) ≈ − 1

h2
tr
(

ΛRT
k Rk+1

)
, t ∈ [kh, (k + 1)h].
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Discrete variational principle

Moser-Veselov / Bobenko-Suris Lie group discrete approach

I Pontryagin-type principle (extra constraint ⇒ relax variations)
(Marsden, Pekarsky, Shkoller)

I The discrete trajectory must satisfy

δ
N−1∑
k=0

−1

h
tr(ΛRT

k Rk+1) +
N∑

k=0

1

2h
tr(λk(RT

k Rk − I)) = 0,

where λk ∈ R3×3 is a matrix of multipliers enforcing
orthogonality of R. Variations of Rk and λk are free.

I Note that

tr(λk(RT
k Rk − I)) = tr(λT

k (RT
k Rk − I))

then a symmetric matrix λk is sufficient to enforce this
condition.
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Integrator derivation
Taking varitions with respect to each Rk

tr(ΛRT
k−1δRk + ΛδRT

k Rk+1 − λkRT
k δRk) = 0,

or equivalently

tr((ΛWk−1 + ΛW T
k − λk)ηk) = 0, (1)

where Wk = RT
k Rk+1 and ηk = RT

k δRk .

λk = ΛWk−1 + ΛW T
k .

Since λk is symmetric

ΛWk−1 + ΛW T
k = W T

k−1Λ + WkΛ,

and if we define µk = WkΛ− ΛW T
k , this becomes equivalent to

µk = W T
k−1µk−1Wk−1.

Since µk is skew-symmetric ⇒ µk ∈ so(3)∗, this can be written as

µk = Ad∗Wk−1
µk−1.
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General integrator equations

In summary, the equations of the integrator are

µk = Ad∗Wk−1
µk−1, % Momentum update: explicit (2)

µk = WkΛ− ΛW T
k , % Legendre transform: implict (3)

W T
k Wk = I, % Orthogonality constraint: implict (4)

Rk+1 = RkWk . % Rotation update: explicit (5)

Given: µk−1,Wk−1, Rk

First update µk from µk−1 and Wk−1 (explicitly); then find Wk

from µk (implicitly); update Rk+1 from Rk and Wk (explicitly).

Can we accurately reproduce these periodic
orbits?
The sphere with radius ‖µ0‖
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Direct Solution

I Solve for W in terms of µ directly using the matrix elements
W ij as uknowns. The equation µ = W Λ− ΛW T is equivalent
to requiring that

µ1 = Λ2W
32 − Λ3W

23,

µ2 = Λ3W
13 − Λ1W

31,

µ3 = Λ1W
21 − Λ2W

12,

(6)

where

µ =

 0 −µ3 µ2

µ3 0 −µ1

−µ2 µ1 0

 ,
and Λi are the diagonal elements of the matrix Λ.

I 3 linear equations + 6 orthogonality conditions on W :
9 implicit equations ⇒ polynomial roots / Newton method.
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Parametrized Solution
Parametrize W = τ(ξ) using parameters ξ: e.g.
exponential coordinates, or Cayley parameters

I Lie algebra identification so(3) ∼ R3. Define ·̂ : R3 → so(3)

ω̂ =

 0 −w3 w2

w3 0 −w1

−w2 w1 0

 (7)

so(3) basis {ê1, ê2, ê3}, êi ∈ so(3) where {e1, e2, e3} is the
standard R3-basis. Elements ξ ∈ so(3) correspond to ω ∈ R3

by ξ = ωαêα, or ξ = ω̂. Operator Ad becomes AdR ω = Rω.
I Example: use the Cayley map

cay(ω̂) = I +
4

4 + ‖ω‖2
(
ω̂ +

ω̂2

2

)
. (8)

I In order to compute W given µ we solve

µ = cay(ω̂)Λ− Λ cay(−ω̂)

for the 3 elements of ω (implicitly) and then find W = τ(ω̂).
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Explicit approximate solution

Use τ to represent W but trunacte its expression in the Legendre
transform equation

I First order truncation of the exponential map

exp(ξ) =
∑∞

i=0
ξi

i! :

τ(ω̂) = exp(ω̂) ≈ I + ω̂.

I The Leg. equation reduces to µ = ω̂Λ + Λω̂, and using
standard inertia matrix J = diag(J1, J2, J3) in identification
so(3) ∼ R3, the integrator is explicit:

ωk = J−1W T
k−1Jωk−1,

Wk = exp(ωk),

Rk+1 = RKWk .
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Nonholonomic Dynamics

Systems with nonintegrable constraint on the velocities

I configuration space Q

I regular distribution D: collection of subspaces Dq ⊂ TqQ

I Lagrangian L : TQ → R,

I control force f : [0,T ]→ T ∗Q.

For a curve (q(t), v(t), p(t)) in TQ ⊕ T ∗Q, t ∈ [0,T ] the
d’Alembert-Pontryagin principle states that

δ

∫ T

0
[L(q, v) + 〈p, q̇ − v〉] dt +

∫ T

0
〈f , δq〉dt = 0,

δq ∈ Dq and vq ∈ Dq,

(9)

for variations that vanish at the endpoints.
Note: nonholonomic vs. vakonomic (δq ∈ Dq)

symplectic structure not preserved in general
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Continuous Equations of Motion
I Constraints Dq defined by m functions ωa : TQ → R,

a = 1, ...,m linear in the velocities and satisfy ωa(q, q̇) = 0.
I After taking variations we get

q̇ = v ,

p =
∂L

∂v
,

〈ṗ − ∂L

∂q
− f , δq〉 = 0,

ωa(q) · v = 0.

Allowed variations are such that ωa(q) · δq = 0 and

ṗ =
∂L

∂q
+ f + fcon,

where fcon are forces necessary to enforce constraints.
I fcon = λaω

a(q) to cancel any acceleration in ṗ − ∂L
∂q − f not

aligned with the constraints. λa are called Lagrangian
multipliers denoting the magnitute of the constraint forces.
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The vertical rolling disk

Configuration space Q = SE(2)× S1, with pose
(x , y , φ) ∈ SE(2) and the rotation angle θ ∈ S1.

I Lagrangian

L(x , y , φ, θ, ẋ , ẏ , φ̇, θ̇) =
1

2
m(ẋ2 + ẏ2) +

1

2
I θ̇2 +

1

2
Jφ̇2,

m: mass, I , J: moments of intertia

I nonholonomic constraints are (with R: the disk radius)

ẋ = R(cosφ)θ̇, ẏ = R(sinφ)θ̇

or in the form ωa · (ẋ , ẏ , φ̇, θ̇) = 0

ω1 = (1, 0, 0,−R cosφ), ω2 = (0, 1, 0,−R sinφ).

I Controlled by torques uφ and uθ
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The vertical rolling disk: continuous equations

The momentum is

p =
∂L

∂v
= (mẋ ,mẏ , I φ̇, J θ̇).

The dynamics equation becomes

mẍ = λ1,

mÿ = λ2,

I φ̈ = uφ,

J θ̈ = −R cosφλ1 − R sinφλ2 + uθ.

Differentiating the constraints and substituting

Jφ̈ = uφ,

(I + mR2)θ̈ = uθ,

which along with the constraints determine the dynamics.
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Nonholonomic Discrete Mechanics

I Discretization: represent q : [0,T ]→ Q by set {q0, ..., qN}
I Approximation: q(kh) ≈ qk , where h = T/N is the time-step.

I Discrete d’Alembert-Pontryagin principle

δ
N−1∑
k=0

[hL(qk+α, vk) + 〈pk , (qk+1 − qk)− hvk〉] +
N−1∑
k=0

h〈fk+α, δqk+α〉 = 0,

δqk ∈ Dqk
and vk ∈ Dqk+α

,

where α ∈ [0, 1] : determines the interpolate quadrature
point; notation: xk+α := (1− α)xk + αxk+1.
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Discrete Equation of Motion

The resulting equations are

qk+1 = qk + hvk , % configuration update

pk =
∂L

∂v
(qk+α, vk), % Legendre transform

pk − pk−1

h
% momentum update

= (1− α)

(
∂L

∂q
(qk+α, vk) + fk+α

)
+ α

(
∂L

∂q
(qk−1+α, vk−1) + fk−1+α

)
+ (λa)kω

a(qk),

ωa(qk+α) · vk = 0. % velocity constraint
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Vertical Disk Integrator
Disk velocity v = (v x , v y , vφ, vθ). The discrete momentum is

pk =
∂L

∂v
(qk+α, vk) = (mv x

k ,mv y
k , Iv

φ
k , Jv

θ
k )

The discrete constraints are

v x
k = R cos(φk+α)vθk , v y

k = R sin(φk+α)vθk .

From the dynamics equation the multipliers can be computed as

λ1 = m(v x
k − v x

k−1)/h, λ1 = m(v y
k − v y

k−1)/h.

Substituting and simplifying the discrete dynamics becomes

I (vφk − vφk−1)/h = (1− α)uφk−1+α + αuφk+α[(
J + mR2 cos(αhvφk )

)
vθk −

(
J + mR2 cos((1− α)hvφk )

)
vθk−1

]
/h

= (1− α)uθk−1+α + αuθk+α.
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There is a lot more...

We’ve looked at only the most basic nonholonomic case. Things
get more interesting when

I incorporating group symmetries (the principal bundle case)

I systmes with multiple bodies or internal joints

I studying relation to the continuous case (e.g. what is discrete
connection, discrete curvature, discrete gyroscopic forces, how
is momentum evolution different?)
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