## Lie group integrators

## Marin Kobilarov

CS 101: Numerical Geometric Integration

February 17, 2009

## Origin of groups

- Évariste Galois Oct 25, 1811 -- May 31, 1832
- First used the word "group" to represent a group of permutations

Galois theory: e.g. conditions whether a polynomial is solvable by radicals Radical republican, documented some of his main ideas while in prison Shot in the stomach and died after a duel, at age 20

- Sophus Lie Dec 17, 1842 - Feb 18, 1899
- Extends Galois' work to continuous transformation groups (Lie groups) Key idea: continuous groups can be studied by linearizing them and looking
at the infinitesimal elements (vectors) that generate them; these generators satisfy a linearized version of a group law and form an algebra (Lie algebra)
- Other: Klein, Killing, Cartan, Weyl, Chevalley



## Groups

- Group: a set G and operation - with the following properties
- Closure: for all $\mathrm{a}, \mathrm{b} \in \mathrm{G}, \mathrm{a} \cdot \mathrm{b} \in \mathrm{G}$
- Associativity: for all $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{G},(\mathrm{a} \cdot \mathrm{b}) \cdot \mathrm{c}=\mathrm{a} \cdot(\mathrm{b} \cdot \mathrm{c})$ (order of operation)
- Identity: there exists $\mathrm{e} \in \mathrm{G}$, such that $\mathrm{e} \cdot \mathrm{a}=\mathrm{a} \cdot \mathrm{e}=\mathrm{a}$

Inverse: for each $\mathrm{a} \in \mathrm{G}$, there exists $\mathrm{b} \in \mathrm{G}$, such that $\mathrm{a} \cdot \mathrm{b}=\mathrm{b} \cdot \mathrm{a}=\mathrm{e}$

- Lie Group: a continuous group $G$ that is also a manifold

Locally looks like an Euclidean space
Multiplication and inversion must be smooth maps, i.e. small changes in the
domain lead to small changes in the range

- Examples:

Groups. the integers under additions, the non-zero rationals under multiplication
Lie groups:
vectors in $\mathrm{R}^{\mathrm{n}}$ under addition
The circle $\mathrm{S}^{1}$ under angle addition mod $2 \pi$ or complex number multiplication
The group of invertible matricics $G 4(\mathrm{R})$
The group of invertible matrices $G L_{n}(R)$ under matrix muttiplication
The euclidean group $\mathrm{SE}(3)$ of rigid body transformations
Sphere $\mathrm{S}^{3}$ of quatemions under quaternion muttipication
Not Lie groups: the spheres ster quaternion multipication $S^{n} n \rightarrow 3$ (they are not parallelizable, which causes loss of
smoothness) the hairy ball theoren smoothness), the hairy ball theoorem


## Lie Algebra

Key Idea: a linearized or infinitesimal version of a Lie group
${ }^{2}$ A space of vectors with a linear operation (bracket $[\mathbb{G} \subseteq: g £ g!g$ )
$2\left[\$ \mathbb{\$}\right.$ is the linearized version of the group commutator $[g, h]=g h g^{-1} h^{-1}$, for $g, h 2 G$ : i.e. what happens if one commutes group transformations?
${ }^{2}$ Satisfy the following properties:

- Anti-commutativity: for all $x, y 2 \mathrm{~g},[x, y]=\mathrm{i}[y, x]$ (comes from the commutator)
- Jacobi identity: for all $x, y, z 2 \mathrm{~g},[x,[y, z]]+[y,[z, x]]+[z,[x, y]]=0$ (linearized version of the group multiplication associativity property)
${ }^{2}$ Example: for matrix groups $[X, Y]=X Y$ i $Y X$ satisfies these properties


## Lie Algebra Properties

Operations (might not be intuitive at first)
${ }^{2}$ The exponential map exp : g! $G$, defined by $\exp (\xi)=\gamma(1)$, with $\gamma: \mathbb{R}$ ! $G$ is the integral curve through the identity of the left invariant vector field associated with $\xi 2 \mathrm{~g}$ (hence, with $\dot{\gamma}(0)=\xi$ );
${ }^{2}$ Conjugation map $\mathrm{I}_{g}: G!G, h!g h g^{-1}$, for $g, h 2 G$ (think: similarity transformation)
${ }^{2}$ Adjoint map $\operatorname{Ad}_{g}: \mathrm{g}!\mathrm{g}:$ the tangent of the conjugation (think: change of basis of vectors)
${ }^{2}$ Bracket operator ad: $\mathrm{g}!\mathrm{g}: \mathrm{ad}_{x} y=[x, y]$ is the linearized version of the Ad operator: $\operatorname{ad}_{x} y=\frac{d}{d t} \mathrm{f}_{t=0} \operatorname{Ad}_{\exp (t x)} y$


## Example: rigid body rotations

${ }^{2}$ Consider a rigid body rotating around a fixed point
${ }^{2}$ Fix a frame of three orthonormal vectors at that point
${ }^{2}$ This frame rotates together with the body
${ }^{2}$ It forms the group of special orthogonal $3 \times 3$ matrices $S O(3)=\mathrm{f} R 2 O(3) \mathrm{j} \operatorname{det}(R)=1 \mathrm{~g}$
2 the Lie algebra of skew-symmetric matrices is denoted $\mathrm{so}(3)=\mathrm{f} \xi 2 \mathbf{R}^{3 \times 3} \mathrm{j}^{T}=\mathrm{i} \xi \mathrm{g}$
These elements $\xi 2$ so(3) can be expressed using a vector $\omega 2 \mathbb{R}^{3}$ throug

$$
\xi=\widehat{\omega}=\left[\begin{array}{ccc}
0 & \mathrm{i} \omega^{3} & \omega^{2} \\
\omega^{3} & 0 & \mathrm{i} \omega^{1} \\
\mathrm{i} \omega^{2} & \omega^{1} & 0
\end{array}\right],
$$

where $\omega$ plays the role of the body-fixed angular velocity. Since the map is isomorphism, the Lie algebra can be identified with $\mathbb{R}^{3}$.
${ }^{2}$ Exponential map

$$
\exp (\omega)=\left\{\begin{array}{ll}
\mathbf{I}_{3}, & \text { if } \omega=0 \\
\mathbf{I}_{3}+\frac{\sin \|\omega\|}{\|\omega\|} \widehat{\omega}+\frac{1-\cos \|\omega\|}{\|\omega\|^{2}} \widehat{\omega}^{2}, & \text { if } \omega \in 0
\end{array},\right.
$$

${ }^{2}$ Adjoint map $\operatorname{Ad}_{R} \omega=R \omega$ : changes from body-fixed to inertial-frame velocity
Bracket is the cross-product $[\omega, v]=\omega £ v$

## Riemannian Metric on a Lie group

Inner product (metric)
${ }^{2}$ generalization of vector dot product
${ }^{2}$ a function hc $\mathbb{Q}: V £ V!\mathbb{R}$ on vector space $V$
${ }^{2}$ Properties: symmetry; linearity, positive-definiteness
Left-invariant Riemannian metrics
${ }^{2}$ On a Lie group we can define a metric $\operatorname{lnc} \mathbb{\Phi}_{g}: T_{g} G £ T_{g} G!\mathbb{R}$ on every tangent space $T_{g} G$ by htv, wii ${ }_{g}$, for some $v, w 2 T_{g} G$
${ }^{2}$ Some metrics (left-invariant) are preseved after a left group transformation of the agrument vectors, i.e.
hnv, wiig ${ }_{g}=$ thb $h v, h w i i_{h g}$ for some $h 2 G$.
2 this enables one to define only a single metric, i.e. at the identity hact $\mathrm{\phi i}$ and use it to compute the metric anywhere on the group by left-translating the argument vectors to the identity: thv, wii ${ }_{g}=\lim ^{-1} v, g^{-1} w i \mathrm{i}$.
${ }^{2}$ Or, since $g^{-1} v 2 T_{e} G » \mathrm{~g}$, by defining a metric on the Lie algebra

## Mechanics and Variational Principles

One more thing: each tangent space $T_{g} G$ has a dual: the linear space of elements which can be multiplied by elements in $T_{g} G$ to give a real number
${ }^{2}$ it is denoted $T_{g}^{*} G=\operatorname{spanf} e^{i} \mathrm{jh} e^{i}, e_{j} \mathrm{i}=\delta_{i, j} \mathrm{~g}, \mathrm{f} e^{i} \mathrm{~g}$ is the basis of $T_{g}^{*} G$ while $\mathrm{f} e_{i} \mathrm{~g}$ is the basis of $T_{g} G$ and the pairing hid is a function giving the number (think: dot product of vectors)
Metrics in mechanics
2 A metric of fundamental importance is the kinetic energy
$K E(\dot{g})=\ln \dot{g}, \dot{g} \mathbf{i i}{ }_{q}=\mathbf{h} \boldsymbol{I} \xi, \xi \mathbf{i}$, for $\xi=g^{-1} \dot{g} 2 \mathrm{~g}$
${ }^{2}$ Rigid body example: $K E=(\mathbf{I} \omega)^{T} \omega$
Variational principles
${ }^{2}$ Appears in the Lagrangian $L=K E(\dot{g})$ : the basis for the underlying variational principle, i.e

$$
\delta \int L(g, \dot{g}) d t=0 \quad \text { ) } \quad\left\langle\frac{d}{d t} \frac{\partial L}{\partial \dot{g}} i \frac{\partial L}{\partial g}, \delta g\right\rangle=0
$$

${ }^{2}$ Better to use $\xi=g^{-1} \dot{g}!$ evolves in a linear space and decouples dynamics $\delta \int \ell(g, \xi) d t=0$, subject to $\xi=g^{-1} \dot{g}$,

## Trajectory discretization on Lie groups

${ }^{2}$ In the discrete setting the continuous curves $g(t), \xi(t)$, for $t 2[0, T]$ are approximated by a discrete set of points at equally spaced time intervals $g:[0, T]!G$ is given the temporal discretization $g^{d}=\mathrm{f} g_{0}, g_{1}, \ldots, g_{N} \mathrm{~g}$
with $g_{k}:=g(k h)$, where $h=T / N$ is the time step.
${ }^{2}$ the trajectory between discrete points is represented by choosing: a velocity $\xi_{k} 2 \mathrm{~g}$ and a retraction map $\tau: \mathrm{g}!\quad G$ which generates the approximation by $g\left(t_{k}+\alpha h\right)^{11 / 4} g_{k} \tau(\alpha h \xi)$


Examples of maps $\tau$ generating the group locally (for matrix groups)
${ }^{2}$ Exponential map: $\exp : \mathrm{g}!\quad G, \exp (\xi)=\sum_{i=0}^{\infty} \frac{\xi^{i}}{i!}$.
${ }^{2}$ Cayley map: $\quad$ cay : $\mathrm{g}!\quad G, \operatorname{cay}(\xi)=(e \text { i } \xi / 2)^{-1}(e+\xi / 2)$.


## Many other possible integrators

Other Lie group integrators
2 based on different group/algebra discretization
${ }^{2}$ based on evolution of group elements only (the standard Veselov / Bobenko,Suris approach )
${ }^{2}$ not based on variational principles (e.g. standard RK in the algebra + group lifts)
${ }^{2}$ based on other geometric notions (e.g. plastic impact onto the group constraint surface)
Integrators for more complex systems
${ }^{2}$ multi-body systems / systems with internal shape
${ }^{2}$ systems with nonholonomic constraints (non-integrable velocity constraints)
More general Lie grupoid integrators
${ }^{2}$ capture complex structures through a more general approach
${ }^{2}$ i.e. can study complex structures by defining more abstract operations
${ }^{2}$ could be useful for easier derivation / implementation


## References

${ }^{2}$ Marsden, J. E., S. Pekarsky and S. Shkoller [1999], Discrete Euler-Poincare and Lie-Poisson equations, Nonlinearity, 12, 1647-1662
Bou-Rabee, N. and J. E. Marsden HamiltonPontryagin Integrators on Li Groups Part I: Introduction and Structure-Preserving Properties, Foundations of Computational Mathematics, 9, (2008), 1-23
${ }^{2}$ Hairer et. al., 2006
${ }^{2}$ Kobilarov, Crane, Desbrun, Lie group integrators for animation and control of vehicles, ACM Transactions on Graphics, 2009

