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Groups

What is a group?
— aset of elements and an operation that creates another element
also in the group, i.e. it preserves the group
— This fact is also associated with a symmetry, i.e. the group, or a
property of the group is invariant to this operation
— The set and its operation satisfy a number of basic group laws

Group theory
— Number theory, algebraic equations, and geometry
— Studies algebraic and geometric structures
— A fundamental tool in mathematics, e.g.:
+ Solving algebraic equations
Combinatorics, cryptography
Differential equations / manifolds
Quantum mechanics, string theory, etc.
Lie Groups v (cost,sint)
—  Continuous groups with smooth structure
— Continuous symmetries t

Origin of groups

Evariste Galois Oct 25, 1811 -- May 31, 1832

First used the word “group” to represent a group of permutations

— Galois theory: e.g. conditions whether a polynomial is solvable by radicals
Radical republican, documented some of his main ideas while in prison

— Shotin the stomach and died after a duel, at age 20

Sophus Lie Dec 17, 1842 — Feb 18, 1899

— Extends Galois’ work to continuous transformation groups (Lie groups)

—  Key idea: continuous groups can be studied by linearizing them and looking
at the infinitesimal elements (vectors) that generate them; these generators
satisfy a linearized version of a group law and form an algebra (Lie algebra)

Other: Klein, Killing, Cartan, Weyl, Chevalley

Groups

Group: a set G and operation - with the following properties:
— Closure: forallabe G,a-beG
— Associativity: for all a,b,c € G, (a-b)-c=a- (b-c) (order of operation)
— lIdentity: there exists e € G, suchthate -a=a-e=a
— Inverse: for each a € G, there exists b € G, such thata-b=b-a=e

Lie Group: a continuous group G that is also a manifold
— Locally looks like an Euclidean space
— Multiplication and inversion must be smooth maps, i.e. small changes in the
domain lead to small changes in the range
Examples:
—  Groups: the integers under additions, the non-zero rationals under multiplication
—  Lie groups:
vectors in R under addition
The circle S* under angle addition mod 27 or complex number multplication
The group of invertible matrices GL,(R) under matrix multiplication
The euclidean group SE(3) of rigid body transformations
‘Sphere S? of quaternions under quaternion multiplication

Not Lie groups: the spheres S2, S, n>3 (they are not parallelizable, which causes loss of
smoothness), the hairy ball theorem

.

Lie Groups

Key Ideas

— Smooth structure — study using its local or linearized version

— Basis at the identity — Treat small infinitesimal group
transformations as vectors attached at the identity which can
locally span all directions of motion
Symmetry — once such a local basis is created (i.e. a basis of
vectors of the tangent space at the identity, called T,G) it can be
transformed around to any point g€G to create a local basis at that
point spanning T,G
Thus the whole group can be described in terms of the tangent
space at the identity, or its Lie algebra
Example: take G=0", where O"={R | RT R = | }, the set of orthogonal
matrices

- |n|f|n”|tes|mal group elements A are such that I+eA € G for some
small e:

i.e. (I+eA)T (I+eA)=I — AT + A = 0 ignoring *
— The Lie algebra is the set {A | AT = -A} of all skew-symmetric
matrices
Lie Algebra
— A space of vectors at the group identity with an operation (bracket)

Lie Algebra

Key Idea: a linearized or infinitesimal version of a Lie group
2 A space of vectors with a linear operation (bracket [¢¢:g£ g! g)

2 [¢d is the linearized version of the group commutator [g, h] = ghg='h~?,
for g,h 2 G: i.e. what happens if one commutes group transformations?

2 Satisfy the following properties:

— Anti-commutativity: for all 2,y 2 @, [z,y] =i [y, z] (comes from the
commutator)

— Jacobi identity: for all z,y,2 2 g, [z, [y, 2]] + [y, [2, z]] + [, [z, 4] = 0
(linearized version of the group multiplication associativity property)

2 Example: for matrix groups [X,Y] = XY | Y X satisfies these properties




Lie Algebra Properties

Operations (might not be intuitive at first)

2 The exponential map exp : g! G, defined by exp(§) = (1), with~ : R !
G is the integral curve through the identity of the left invariant vector field
associated with £ 2 g (hence, with 4(0) = &);

2 Conjugation map I, : G! G, h! ghg™!, for g,h 2 G (think: similarity
transformation)

2 Adjoint map Ad, : g! g: the tangent of the conjugation (think: change
of basis of vectors)

2

Bracket operator ad : g! g: ad, y = [2,y] is the linearized version of the
Ad operator: ad, y = %ji—o Adexp(ta) ¥

0 =g
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Example: rigid body rotations

Consider a rigid body rotating around a fixed point

Fix a frame of three orthonormal vectors at that point

This frame rotates together with the body

1t forms the group of special orthogonal 3x3 matrices -
S0(3)=f R2 0B3)jdet(R) =19

the Lie algebra of skew-symmetric matrices is denoted

so(3) =f €2 R¥¢T = ¢ g

These elements € 2 S0(3) can be expressed using a vector w 2 R* through

where w plays the role of the hody-fired angular velocity. Since the Smap
is isomorphism, the Lie algebra can be identified with R3:

W3
0
Wt

Exponential map

I3, fu=0
exp(w) = Iy 4 Snlel g 143.«”_,”;3‘ YE

Adjoint map Adgw = Rw : changes from body-fixed to inertial-frame
velocity

Bracket s the duct vl = wf v

Riemannian Metric on a Lie group

Inner product (metric)

2 generalization of vector dot product

2 afunction l§@ : V£ V! R on vector space V'

2 Properties: symmetry; linearity, positive-definiteness
Left-invariant Riemannian metrics

? On a Lie group we can define a metric ¢ di, : T,G £ T,G! R on every
tangent space TyG by tw, wii ,, for some v, w 2 T,G

Some metrics (left-invariant) are preseved after a left group transformation
of the agrument vectors, i.e.
thw, wii ; = Who, hwii ,, for some h 2 G.

this enables one to define only a single metric, i.e. at the identity H @i
and use it to compute the metric anywhere on the group by left-translating
the argument vectors to the identity: tw, wii , = thg=1v, g~ wii.

Or, since g~ v 2 T.G » @, by defining a metric on the Lie algebra

Mechanics and Variational Principles

One more thing: each tangent space T,G has a dual: the linear space of
elements which can be multiplied by elements in T,G to give a real number

2 it is denoted T;G = spanfefjte,eji = 6,0, fe' is the basis of T;G
while fe;g is the basis of T, G and the pairing h§@ is a function giving the
number (think: dot product of vectors)

Metrics in mechanics

2 A metric of fundamental importance is the kinetic energy
KE(g) = thy, git, = NI €T for E =g g2 g
2 Rigid body example: KE = (Iw)"w

Variational principles

2 Appears in the Lagrangian L = KE(3): the basis for the underlying
variational principle, i.c.

A ) 4oL I
o/L(g,g)dt:o ) <E([~)_gi (a—y,ﬁg>:0

2 Bettertouse £ = g1 ! evolves in a linear space and decouples dynamics

5/ £(g,€)dt = 0, subject to £ = g~ g,

Review: variational principles and integrators

Trajectory discretization on Lie groups

2 In the discrete setting the continuous curves g(t),&(t), for t 2 [0,T] are
approximated by a discrete set of points at equally spaced time intervals:
g:[0,T]! G is given the temporal discretization g? = fgo,g1,...,gn0
with gi :=g(kh), where h=T/N is the time step.

2 the trajectory between discrete points is represented by choosing: a veloc-
ity & 2 g and a retraction map 7: ! G which generates the approxi-
mation by g(ty + ah) ¥a ger(ahé)

T o g

Examples of maps 7 generating the group locally (for matrix groups)
2 Baponential map: exp:g! G, exp(€) =y 5_
5 i

2 Cayley map: cay:g! G, cay(§) = (ej £/2)7 (e +&/2).
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Pontryagin’s principle on Lie groups

The Pontryagin viewpoint:
enforce the group constraint with a multiplier 2 g* in the Lie algebra dual.

Continuous Discrete
RE(ER) + e, ™ (g gus) h - &l + Y fiy g Mogui =0
= =
S g grn)) = drid, (i me+ Ad g i)

e = BE()
(A7pd ) ki (A7 7he, ) ko1 = hfi

drg

- 1 1 2
=1i gadg o5 adi 4.

reflects the "non-flatness” of the spacq

Example: rigid body rotation

Continuous Discrete (Lie-Trapezoid scheme)
CI=1Iw 0y = Twy
M=HEw+f (i 200 T i (1+5&0) Ty = hfi

R=R3 Riy1 = Rir(h)
3
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Many other possible integrators

Other Lie group integrators
2 based on different group/algebra discretization

2 based on evolution of group elements only (the standard Veselov / Bobenko,Suris
approach )

2 not based on variational principles (e.g. standard RK in the algebra +
group lifts)

2 based on other geometric notions (e.g. plastic impact onto the group
constraint surface)

Integrators for more complex systems

2 multi-body systems / systems with internal shape

2 systems with constraints (non-integrable velocity constraints)
More general Lie grupoid integrators

2 capture complex structures through a more general approach

2 je. can study complex structures by defining more abstract operations

2 could be useful for easier derivation / implementation
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