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Groups
• What is a group?

– a set of elements and an operation that creates another element 
also in the group, i.e. it preserves the group

– This fact is also associated with a symmetry, i.e. the group, or a 
property of the group is invariant to this operation

– The set and its operation satisfy a number of basic group laws
• Group theory

– Number theory, algebraic equations, and geometry
– Studies algebraic and geometric structures
– A fundamental tool in mathematics, e.g.: 

• Solving algebraic equations
• Combinatorics, cryptography
• Differential equations / manifolds
• Quantum mechanics, string theory, etc…

• Lie Groups
– Continuous groups with smooth structure
– Continuous symmetries

Origin of groups

• Évariste Galois Oct 25, 1811 -- May 31, 1832 
– First used the word “group” to represent a group of permutations
– Galois theory: e.g. conditions whether a polynomial is solvable by radicals
– Radical republican, documented some of his main ideas while in prison
– Shot in the stomach and died after a duel, at age 20

• Sophus Lie Dec 17, 1842 – Feb 18, 1899
Extends Galois’ work to continuous transformation groups (Lie groups)– Extends Galois  work to continuous transformation groups (Lie groups)

– Key idea: continuous groups can be studied by linearizing them and looking 
at the infinitesimal elements (vectors) that generate them; these generators 
satisfy a linearized version of a group law and form an algebra (Lie algebra)

• Other: Klein, Killing, Cartan, Weyl, Chevalley

Groups
• Group: a set G and operation · with the following properties:

– Closure: for all a,b ∈ G, a· b ∈ G
– Associativity: for all a,b,c ∈ G, (a· b)· c = a · (b · c)   (order of operation)
– Identity: there exists e ∈ G, such that e · a = a · e = a
– Inverse: for each a ∈ G, there exists b ∈ G, such that a· b = b· a = e

• Lie Group: a continuous group G that is also a manifold
– Locally looks like an Euclidean space
– Multiplication and inversion must be smooth maps, i.e. small changes in the 

domain lead to small changes in the rangedomain lead to small changes in the range
• Examples:

– Groups: the integers under additions, the non-zero rationals under multiplication
– Lie groups: 

• vectors in Rn under addition  
• The circle S1 under angle addition mod 2π or complex number multiplication
• The group of invertible matrices GLn(R) under matrix multiplication
• The euclidean group SE(3) of rigid body transformations
• Sphere S3 of quaternions under quaternion multiplication
• Not Lie groups:  the spheres S2, Sn, n>3 (they are not parallelizable, which causes loss of 

smoothness), the hairy ball theorem

Lie Groups
• Key Ideas

– Smooth structure → study using its local or linearized version
– Basis at the identity → Treat small infinitesimal group 

transformations as vectors attached at the identity which can 
locally span all directions of motion

– Symmetry → once such a local basis is created (i.e. a basis of 
vectors of the tangent space at the identity, called TeG) it can be 
transformed around to any point g∈G to create a local basis at that 
point spanning TgG

– Thus the whole group can be described in terms of the tangent 
space at the identity or its Lie algebraspace at the identity, or its Lie algebra

• Example: take G=On, where On={R | RT R = In}, the set of orthogonal 
matrices

– Inifinitesimal group elements A are such that I+²A ∈ G for some 
small ² : 
i.e. (I+²A)T (I+²A)=I → AT + A = 0 ignoring ²2

– The Lie algebra is  the set {A | AT = -A} of all skew-symmetric 
matrices

• Lie Algebra 
– A space of vectors at the group identity with an operation (bracket)

Lie Algebra

Key Idea: a linearized or infinitesimal version of a Lie group

² A space of vectors with a linear operation (bracket [¢, ¢] : g £ g ! g )

² [¢, ¢] is the linearized version of the group commutator [g, h] = ghg−1h−1,
for g, h 2 G: i.e. what happens if one commutes group transformations?

² Satisfy the following properties:

— Anti-commutativity: for all x, y 2 g, [x, y] = ¡ [y, x] (comes from the
commutator)

— Jacobi identity: for all x, y, z 2 g, [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0
(linearized version of the group multiplication associativity property)

² Example: for matrix groups [X, Y ] = XY ¡ Y X satisfies these properties
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Lie Algebra Properties

Operations (might not be intuitive at first)

² The exponential map exp : g ! G, defined by exp(ξ) = γ(1), with γ : R !
G is the integral curve through the identity of the left invariant vector field
associated with ξ 2 g (hence, with γ̇(0) = ξ);

² Conjugation map Ig : G ! G, h ! ghg−1, for g, h 2 G (think: similarity
transformation)

² Adjoint map Adg : g ! g: the tangent of the conjugation (think: change
of basis of vectors)

² Bracket operator ad : g ! g: adx y = [x, y] is the linearized version of the
Ad operator: adx y =

d
dt jt=0Adexp(tx) y

Example: rigid body rotations
² Consider a rigid body rotating around a fixed point

² Fix a frame of three orthonormal vectors at that point

² This frame rotates together with the body

² It forms the group of special orthogonal 3x3 matrices
SO(3) = f R 2 O(3)j det(R) = 1 g

² the Lie algebra of skew-symmetric matrices is denoted
so(3) = f ξ 2 R3×3jξT = ¡ ξ g
These elements ξ 2 so(3) can be expressed using a vector ω 2 R3 through⎡

0 3 2
⎤

ξ = bω =
⎡⎣ 0 ¡ ω3 ω2

ω3 0 ¡ ω1
¡ ω2 ω1 0

⎤⎦ ,
where ω plays the role of the body-¯xed angular velocity. Since the b¢map
is isomorphism, the Lie algebra can be identified with R3:

² Exponential map

exp(ω) =

(
I3, if ω = 0

I3 +
sin kωk
kωk bω + 1−cos kωk

kωk2 bω2, if ω 6= 0 ,

² Adjoint map AdR ω = Rω : changes from body-fixed to inertial-frame
velocity

² Bracket is the cross-product [ω, v] = ω £ v

Riemannian Metric on a Lie group

Inner product (metric)

² generalization of vector dot product

² a function h¢, ¢i : V £ V ! R on vector space V

² Properties: symmetry; linearity, positive-definiteness

Left-invariant Riemannian metrics

² On a Lie group we can define a metric hh¢ ¢ii : T G £ T G ! R on everyOn a Lie group we can define a metric hh¢, ¢ii g : TgG £ TgG ! R on every
tangent space TgG by hhv, wii g, for some v, w 2 TgG

² Some metrics (left-invariant) are preseved after a left group transformation
of the agrument vectors, i.e.
hhv, wii g = hhhv, hwii hg for some h 2 G.

² this enables one to define only a single metric, i.e. at the identity hh¢, ¢ii
and use it to compute the metric anywhere on the group by left-translating
the argument vectors to the identity: hhv, wii g = hhg−1v, g−1wii .

² Or, since g−1v 2 TeG » g, by defining a metric on the Lie algebra

Mechanics and Variational Principles
One more thing: each tangent space TgG has a dual: the linear space of

elements which can be multiplied by elements in TgG to give a real number

² it is denoted T ∗gG = spanf eijhei, ej i = δi,jg, f eig is the basis of T ∗gG
while f eig is the basis of TgG and the pairing h¢j¢i is a function giving the
number (think: dot product of vectors)

Metrics in mechanics

² A metric of fundamental importance is the kinetic energy
KE(ġ) = hhġ, ġii g = hIξ, ξi , for ξ = g−1ġ 2 g

² Rigid body example: KE = (Iω)Tω

Variational principles

² Appears in the Lagrangian L = KE(ġ): the basis for the underlying
variational principle, i.e.

δ

Z
L(g, ġ)dt = 0 )

¿
d

dt

∂L

∂ġ
¡
∂L

∂g
, δg

À
= 0

² Better to use ξ = g−1ġ ! evolves in a linear space and decouples dynamics

δ

Z
`(g, ξ)dt = 0, subject to ξ = g−1ġ,

Review: variational principles and integrators Trajectory discretization on Lie groups
² In the discrete setting the continuous curves g(t), ξ(t), for t 2 [0, T ] are
approximated by a discrete set of points at equally spaced time intervals:
g : [0, T ] ! G is given the temporal discretization gd = f g0, g1, . . . , gNg
with gk :=g(kh), where h=T/N is the time step.

² the trajectory between discrete points is represented by choosing: a veloc-
ity ξk 2 g and a retraction map τ : g ! G which generates the approxi-
mation by g(tk + αh) ¼ gkτ (αhξ)

Examples of maps τ generating the group locally (for matrix groups)

² Exponential map: exp : g ! G, exp(ξ) =
∞X
i=0

ξi

i!
.

² Cayley map: cay : g ! G, cay(ξ) = (e ¡ ξ/2)−1(e+ ξ/2).
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Continuous Discrete

δ

Z T

0

[`(ξ) + hμ, g−1ġ ¡ ξi ] +
Z

hf, g−1δgi = 0
N−1X
k=0

h`(ξk) + hμk, τ−1(g−1k gk+1)/h ¡ ξki +
NX
k=0

hfk, g−1k δgki = 0

Pontryagin’s principle on Lie groups
The Pontryagin viewpoint:

enforce the group constraint with a multiplier μ 2 g∗ in the Lie algebra dual.

δ(g−1ġ) = η̇ + adξ η, η = g−1δg δ(τ−1(g−1k gk+1)) = dτ
−1
hξk
(¡ ηk +Adg−1k gk+1

ηk+1)

μ = ∂`
∂ξ μk =

∂`
∂ξ (ξk)

μ̇ = ad∗ξ μ+ f (dτ−1hξk )
∗μk ¡ (dτ−1−hξk−1)

∗μk−1 = hfk

dτ−1ξ = I ¡
1

2
adξ +

1

12
ad2ξ +...

reflects the ”non-flatness” of the space

Continuous Discrete (Lie-Trapezoid scheme)
Π = Iω Πk = Iωk

Π̇ = Π £ ω + f (I ¡ h
2
cωk)TΠk ¡ (I+h

2
[ωk−1)TΠk−1 = hfk

Ṙ = Rbω Rk+1 = Rkτ(hbω)

Example: rigid body rotation

Many other possible integrators
Other Lie group integrators

² based on different group/algebra discretization

² based on evolution of group elements only (the standard Veselov / Bobenko,Suris
approach )

² not based on variational principles (e.g. standard RK in the algebra +
group lifts)

² based on other geometric notions (e.g. plastic impact onto the group
constraint surface)co st a t su ace)

Integrators for more complex systems

² multi-body systems / systems with internal shape

² systems with nonholonomic constraints (non-integrable velocity constraints)

More general Lie grupoid integrators

² capture complex structures through a more general approach

² i.e. can study complex structures by defining more abstract operations

² could be useful for easier derivation / implementation
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